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 ( ECGالقلب ) إزالة تداخل خطوط الطاقة من إشارة تخطيط 

 1 الفتحي الدين سراج،،*1الساعدي براهيم سليمان إ

 الملخص  الكلمات المفتاحية 

 خطيط كهربية القلب ت

 تداخل خطوط الطاقة  

  التعامد الحيوي  

 ( SNRنسبة الإشارة إلى الضوضاء ) 

 (. SCVقيمة ارتباط الإشارة ) 

( القلب  كهربية  تخطيط  في ECGيُعد  واسع  نطاق  على  ويُستخدم  للقلب،  الكهربائي  النشاط  يُمثل  إذ  أساسية،  تشخيصية  أداة   )
قدم إشارات تخطيط كهربية القلب رؤىً بالغة  

ُ
تشخيص أمراض القلب والأوعية الدموية، وكذلك في تقييم الصحة العامة للقلب. ت

الأهمية حول الحالة الوظيفية للقلب والمعلمات المرتبطة به؛ ومع ذلك، غالبًا ما تكون هذه الإشارات عرضة للتشويه الناتج عن أنواع  
القلب   كهربية  تخطيط  وضوضاء  الأساس،  خط  وتجوال  الطاقة،  خطوط  تداخل  الضوضاء  هذه  تشمل  الضوضاء.  من  مختلفة 

 50اقة بمكون تردد  )ضوضاء تخطيط كهربية القلب(، والتشوهات الناتجة عن حركة الأقطاب الكهربائية. يتميز تداخل خطوط الط
  

ً
عادة سعته  وتشكل  من   %50هرتز،  الغالب  في  التداخل  هذا  ينشأ  الذروة.  إلى  الذروة  من  القلب  كهربية  تخطيط  إشارة  سعة  من 

هو معالجة إشارة تخطيط كهربية القلب باستخدام  الورقةالاضطرابات الكهرومغناطيسية المرتبطة بخطوط الطاقة. الهدف من هذه 
MATLAB  .مرشح نوتش للمعالجة الأولية للإشارة، وطبقنا عائلتين من الموجات، وهما الموجات المتماثلة والموجات    تم استخدام

المتعامدة بيولوجيًا، لتخفيف تأثير تداخل خطوط الطاقة على إشارة تخطيط القلب. بعد ذلك، قارنا فعالية هاتين العائلتين في إطار 
تقييم   خلال  من  الإشارة  )معالجة  الضوضاء  إلى  الإشارة  )SNRنسبة  الإشارة  ارتباط  وقيمة   )SCV عائلة تفوق  النتائج  أظهرت   .)

بيولوجيًا   المتعامدة  الموجة  تطبيق  أدى  حيث  غيرها،  على  بيولوجيًا  المتعامدة  بلغت   2.4الموجات  ضوضاء  إلى  إشارة  نسبة  إلى 
 ديسيبل. 0.9956ديسيبل، وقيمة ارتباط الإشارة بلغت  20.2553

 
Introduction 
An electrocardiogram (ECG) represents a documented 

manifestation of the electrical activity of the heart, serving as 

a prevalent diagnostic tool for heart disease. ECG signals 

yield critical insights regarding the operational conditions of 

the heart and the circulatory system. The frequency spectrum 

of an ECG signal typically spans from 0.05 to 100 Hz, with a 

dynamic range between 1 to 10 mV; given its nature as a 

weak non-static signal, ECG signals are frequently 

compromised by various forms of noise, including power line 

interference, basic roaming (which encompasses electrode 

contact noise and movement), and electromyographic 

artifacts [1]. 

Power line interference constitutes a primary source of noise 

that often contaminates ECG signals, characterized by a 60 

Hz (or 50 Hz in certain regions) sinusoidal waveform and its 

harmonics; this phenomenon is predominantly attributed to 
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The electrocardiogram (ECG) is regarded as an essential diagnostic tool, as it serves as a 

representation of the cardiac electrical activity and is extensively employed in the diagnosis of 

cardiovascular diseases, as well as in assessing the overall health of the heart. ECG signals yield 

critical insights into the functional condition of the heart and its associated parameters; however, 

these signals are frequently vulnerable to distortion caused by various types of noise. Such noise 

includes powerline interference, baseline wandering, electromyographic noise (EMG noise), and 

artifacts resulting from electrode movement. Powerline interference is characterized by a 50 Hz 

frequency component, and its amplitude typically constitutes 50% of the peak-to-peak amplitude 

of the ECG signal. This interference predominantly arises from electromagnetic disturbances 

associated with power lines. The objective of this study is to process the ECG signal utilizing 

MATLAB. We employed a Notch filter for the initial preprocessing of the signal and applied two 

families of wavelets, namely Symlets and Biorthogonal wavelets, to mitigate the impact of 

powerline interference on the ECG signal. Subsequently, we compared the efficacy of these 

wavelet families in the signal processing framework by evaluating the Signal-to-Noise Ratio 

(SNR) and the Signal Correlation Value (SCV). The findings demonstrated that the Biorthogonal 

wavelet family outperformed the others, as the application of the Biorthogonal wavelet 2.4 resulted 

in a Signal-to-Noise Ratio of SNR=20.2553 dB and a Signal Correlation Value of SCV=0.9956. 
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electromagnetic interference generated by power lines, as 

well as electromagnetic fields emanating from proximate 

electrical apparatuses such as air conditioning units, 

elevators, and X-ray machines that exert considerable current 

draw on the power grid, consequently inducing 50 Hz signals 

within the input circuits of cardiac mapping devices. 

Additionally, the stray effects of alternating current fields 

resulting from cable loops and inadequate grounding of either 

the patient or the ECG apparatus further exacerbate this issue, 

wherein the presence of such extraneous interferences poses 

significant challenges in the accurate diagnosis of ECG 

readings. the mitigation of power line interference (PLI) from 

electrocardiogram (ECG) signals presents a significant 

challenge, as the frequency of power line noise resides within 

the overlapping frequency spectrum of both ECG and PLI 

signals [2]. Consequently, it is essential to implement 

appropriate signal processing techniques to proficiently 

eradicate PLI noise from ECG recordings. Moreover, the 

analysis of high-resolution ECG signals that are adversely 

affected by noise interference is of considerable importance, 

as the elimination of noise represents a fundamental 

challenge within the field of signal processing [3]. A range of 

diverse methodologies is utilized for the purpose of 

mitigating noise in electrocardiographic recordings. 

In the study [4], eighteen ECG signals were extracted from 

the dominant noise using thirty-two discrete waveform 

transforms (DWTs). This method was used to evaluate the 

optimal performance in canceling power line interference. 

For comparison, the signals were also denoised using a 

conventional score filtering methodology, with the resulting 

data evaluated according to three performance metrics: 

signal-to-noise ratio (SNR), mean square error (MSE), and 

signal correlation value (SCV). 

 The subsequent study [5], sourced the reference ECG signal 

data from the MIT-BIH database. A multitude of filtering 

methodologies, including discrete wavelet transform (DWT), 

normalized least mean square (NLMS) filter, finite impulse 

response (FIR) filter, and infinite impulse response (IIR) 

filter, were employed in this study to mitigate the noise 

contaminating the compromised electrocardiogram (ECG) 

signal caused by (PLI). Subsequently, a comparative analysis 

of methodologies was conducted to identify the most 

efficacious strategy for mitigating distortion in a 

compromised ECG signal. The parameters employed for this 

evaluation encompassed Mean Squared Error (MSE), Mean 

Absolute Error (MAE), Signal-to-Noise Ratio (SNR), and 

Peak Signal-to-Noise Ratio (PSNR). An exemplary noise 

reduction algorithm demonstrates elevated values for SNR 

and PSNR, in conjunction with diminished values for MSE 

and MAE. 
Electrocardiogram signal 

Upon acquisition of the electrocardiographic (ECG) signal 

via an ECG apparatus, the amplitude of the signal, measured 

in millivolts, is graphically represented in conjunction with 

the temporal dynamics of the heart's electrical activity. 

Electrodes affixed to the dermal layer detect minuscule 

electrical variations, which adversely impact the normative 

ECG waveform and result in complications such as 

fibrillation, tachycardia, and inadequate perfusion in the 

coronary arteries. A Holter monitor may additionally be 

utilized to document the electrical phenomena associated 

with the cardiac muscle. An electrocardiogram, often denoted 

as ECG, constitutes a straightforward diagnostic procedure 

utilized to assess cardiac rhythm. Sensors or conductive 

pathways are strategically positioned over the thorax, upper 

limbs, and lower limbs for a brief duration to capture the 

electrical signals emanating from the heart. The cardiologist 

meticulously scrutinizes these signals to ascertain any 

anomalies. An electrocardiogram is distinct from an 

echocardiogram, which represents a diagnostic examination 

focused on the structural and functional aspects of the heart. 

Normal electrical impulses facilitate the contraction of 

various segments of the heart, with alterations in these 

impulses serving as indicators of specific pathological 

conditions impacting cardiac function [6]. Figure1  delineates 

the principal waves observable in the ECG output. There 

exist five primary waves manifested in the ECG results: “P, 

Q, R, S, T,” sequentially. Each wave signifies a particular 

moment in the cardiac cycle during which electrical current 

traverses from the atria to the ventricles, while the intervals 

between the waves denote the duration required for the 

current to propagate from one point to another [7]. Figure (2) 

also illustrates the most critical segment of the ECG, namely 

the QRS complex, whose morphology and timing yield 

substantial statistics and insights regarding the heart's 

operational efficacy [2]. A conventional QRS detection 

algorithm typically encompasses two fundamental phases: 

preprocessing and resolution. The former exclusively entails 

a specific form of filtering [8], while the latter endeavors to 

identify QRS complexes within the ECG signal. 

 
Fig. 1: ECG wave [9] 

 

Power line interference noise 

The power line operates at a frequency of 50 Hz, with the 

amplitude measured at 50% of the peak-to-peak 

electrocardiogram (ECG) amplitude [10]. Interference 

primarily arises from electromagnetic interference emanating 

from the power line, the electromagnetic fields (EMF) 

produced by nearby devices, the stray effects of alternating 

current (AC) fields due to cable loops, or through inadequate 

grounding of the patient or the ECG apparatus. Electrical 

devices generate 50 Hz signals within the input circuits. This 

phenomenon is particularly evident with ECG devices 

associated with air conditioning units, elevators, and X-ray 

machines that draw substantial current from the power line 

[11]. The electromagnetic fields produced by the power line 

represent a prevalent source of noise in the ECG, as well as in 

any other bioelectrical signals recorded from the body's 

surface. Such narrowband noise complicates the analysis and 

interpretation of the ECG, as it renders the identification of 

low-amplitude waveforms less reliable. Furthermore, it may 

introduce artifacts in the form of spurious waveforms. It is 

imperative to eliminate power line interference from ECG 

signals due to its complete disruption of low-frequency ECG 

waves, including the P wave and T wave [11]. Figure 2 
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shows the Powerline Interference Noise 

 

 
Fig. 2: Powerline Interference Noise [12] 

Methodology 

The methodology adopted in this study begins with the 

acquisition of an electrocardiogram (ECG) signal afflicted by 

powerline interference, a prevalent concern attributed to 

electromagnetic disturbances emanating from electrical 

apparatus or inadequate grounding practices. To mitigate this 

issue, an Infinite Impulse Response (IIR) Notch filter is 

initially implemented to eliminate the constant 50 Hz 

frequency component, ensuring minimal disruption to other 

segments of the signal. This filtering procedure diminishes 

the predominant noise, thereby establishing a more reliable 

basis for ensuing signal analysis. The resultant filtered signal 

is subsequently subjected to processing via the Discrete 

Wavelet Transform (DWT), utilizing two distinct families of 

wavelets: Symlets and Biorthogonal. Within the Biorthogonal 

domain, the wavelet coefficients are employed to reconstruct 

the signal, with the objective of achieving recovery with 

minimal distortion. Conversely, in the Symlets domain, the 

coefficients are utilized to derive performance metrics, 

including Signal-to-Noise Ratio (SNR), Mean Squared Error 

(MSE), and Signal Correlation Value (SCV). Upon the 

completion of evaluations across both branches, the resultant 

performance metrics of each wavelet family are meticulously 

compared to ascertain which yields superior noise 

attenuation. In light of these performance metrics, the 

wavelet type deemed most effective for mitigating powerline 

interference is identified. This culminates the methodology, 

which is predicated on wavelet-based signal processing 

methodologies to optimize ECG signal fidelity by reducing 

distortion as illustrated in Figure 3. 

Discrete Wavelet Transform (DWT) 

bands and distinct intensities by examining the signal for 

both detailed and approximate information, as elucidated in 

the subsequent two equations: [13]. 

𝑐_{𝑗 + 1}(𝑘)  = \𝑠𝑢𝑚_{𝑚} 𝐿(𝑧)(𝑚 −  2𝑘) 𝑐_𝑗       (1) 

𝑑_{𝑗 + 1}(𝑘)  = \𝑠𝑢𝑚_{𝑚} 𝐻(𝑧)(𝑚 −  2𝑘) 𝑐_𝑗      (2) 

The frequency of input signal is divided into frequency 

packets corresponding to the packet width through the 

utilization of the low and high-pass filters L(Z) and H(Z), 

respectively. The output generated by these filters exhibits 

half the frequency while retaining the sum of the samples 

from the input signal; furthermore, the combined outputs 

encapsulate the same frequency content as the input signal, 

thereby resulting in a data quantity that is effectively doubled 

[13] , as illustrated in Fig. 4. 

The original signal can be reconstructed utilizing the 

composition of bank filters. During the composition process, 

the signal is sampled in an upward vertical manner and 

subsequently processed through the L(Z) and H(Z) filters. 

The filters used in the synthesis process are derived from the 

filters used in the analysis process, as they are combined with 

the outputs of the synthesis filters to reconstruct the signal 

y(K) [13] as shown in Fig. 5. 

 
Fig.3: Flowchart of the methodology 

 

 
 

Fig. 4: Signal analysis using down sampling 

 

 
Fig. 5: Signal fitting using up sampling 

The primary distinction between continuous wavelet 

transforms and discrete wavelet transforms lies in the 

capability to select a subset of the gradients and transitions 

requisite for processing, rather than executing the 

transformation across all gradients and transitions through 

temporal interruptions in the signal. This transformation 

yields a sufficient amount of information, with a reduction in 

computational time while concurrently preserving the 

fundamental information of the signal [14]. The wavelet 
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transform family encompasses various types, including 

Biorthogonal and Symlet, which are employed in this 

research as illustrated in Figure 6. 

 
Fig. 6: Symlet family wavelets 

Results and discussion 
 

The objective of the filtering procedure is to diminish the 

noise levels within the signal, whilst concurrently ensuring 

that there is no alteration or distortion to the original 

waveform. The elimination of noise from the 

electrocardiogram (ECG) represents a critical challenge 

encountered by medical practitioners, as it is pivotal in the 

accurate diagnosis of cardiac disorders. In this paper, a 

simulation was performed to reduce the signal-to-noise ratio 

of the ECG. This section describes the main findings. The 

ECG signal, which exhibited power line interference noise, 

commonly referred to as Powerline Interference, was 

obtained as illustrated in Figure (7). 

 

Fig. 7: ECG signal with noise (Powerline Interference) 

To remove the noise from the ECG signal, an IIR notch filter 

was used as it is considered one of the best filters capable of 

producing a signal with higher contrast and clarity. Figure 8 

shows the resulting signal after applying the IIR notch filter.  

• Use wavelet symlets 

Figure (9) illustrates the transactions that were reconstructed 

subsequent to the application of wavelet analysis (sym2) to 

the signal produced by the notch filter depicted in Figure (8), 

wherein the discrete wavelet transform was employed on the 

resultant signal from the filter. 

Figure (10) shows the transactions that were reconstructed 

using the sym4 wavelet and compare to Figure (9), which 

shows the reconstructed transactions in the case of sym2. 

Figure (11) displays the transactions that were reconstructed 

employing the sym7 wavelet, in contrast to Figure (9), which 

 

Fig. 8: The signal generated by applying the IIR Notch filter 
 

 

Fig. 9: The reconstructed transactions in the case of sym2 

 

Fig. 10: The reconstructed transactions in the case of sym4 

represents the reconstructed transactions associated with 

sym2, as well as Figure (10), which illustrates the 

reconstructed transactions relevant to sym4. 

Due to the unique features of each wavelet, determining 

which one performed best in reconstructing the signal, as 

shown in the earlier figures (9), (10), and (11), can be quite 

difficult. Therefore, to facilitate comparison, we return to the 

signal metrics that clarify how effective the wavelet is in 

reconstructing the signal transactions. Additionally, the 

examination was carried out in four separate levels or stages 

to provide a more accurate time representation of the signal. 
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Figure (12) displays the original signal, which is influenced 

by noise from power line interference (PLI), alongside the 

signal that was filtered using the discrete wavelet transform 

(DWT) and then fitted to the transactions with the sym2 

wavelet, which has proven successful in reconstructing the 

transactions after analysis. 

 

 

Fig. 11: The transactions that were reconstructed in the case of 

sym7 

 

Fig. 12: The original signal filtered using the sym2 wavelet 
 

 

Table 1: Comparison of wavelet symlets 

Wavelet Type SNR (dB) (SCV) 

Sym2 18.8864 0.99391 

Sym3 17.7606 0.99374 

Sym4 18.4228 0.99312 

Sym5 18.7137 0.99364 

Sym6 18.3944 0.99314 

Sym7 16.7191 0.98975 

Sym8 18.3718 0.99315 

 

whereas: SNR refers to the ratio of the original signal to the 

noise present in the reconstructed signal. SCV denotes the 

correlation coefficient that exists between the original and the 

reconstructed signals. 

This involves rebuilding the transactions after thorough 

examination. 

• Use Biorthogonal wavelets 

Figure (13) shows the coefficients that were restored after 

conducting wavelet analysis (bior2.4) on the signal obtained 

from the click filter illustrated in Figure (8), where the 

discrete wavelet transform was performed on the signal 

generated by the mentioned filter. 

 

Fig. 13: The transactions that were reconstructed in the case of 

bior2.4 

figure (14) presents the transactions that were reconstructed 

utilizing the bior1.5 wavelet, and is to be compared with 

Figure (13), which delineates the reconstructed transactions 

in the context of bior2.4. 

 

Fig. 14: The transactions that were reconstructed in the case of 

bior1.5 

Figure (15) exhibits the transactions that were reconstructed 

through the implementation of the bior4.4 wavelet, and is to 

be contrasted with Figure (13), which illustrates the 

reconstructed transactions in the scenario of bior2.4, as well 

as Figure (14), which displays the reconstructed transactions 

in the instance of bior1.5. 

Given the unique characteristics of each wavelet, it remains 

challenging to ascertain which wavelet exhibited superior 

performance in reconstructing the signal as evidenced by the 

preceding figures (13), (14), and (15). Consequently, in the 

evaluative process, we revert to the signal metrics, which 

elucidate the wavelet that performs optimally among the 

various wavelets in reconstructing the signal transactions. 

The analysis was conducted in four stages or levels to acquire 

the signal with enhanced temporal accuracy. Figure (16) 

portrays the original signal, which is contaminated with 

power line interference (PLI) noise, in conjunction with the 

signal that underwent filtration through the application of the 

discrete wavelet transform (DWT), and following the 
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adjustment of the coefficients employing the bior2.4 wavelet, 

which has demonstrated efficacy in reconstructing the 

coefficients post-analysis. 

 

 

Fig. 15: The transactions that were reconstructed in the case of 

bior4.4 

 

 

Fig. 16: The original signal and the filtered signal using the bior2.4 

wavelet 

 
Table 2: Comparison of Biorthogonal wavelets 

Wavelet Type SNR (dB) (SCV) 

Bior1.3 17.153 0.99056 

Bior1.5 16.563 0.98991 

Bior2.2 19.126 0.99413 

Bior2.4 20.255 0.99561 

Bior2.6 19.531 0.99418 

Bior3.5 17.253 0.99079 

Bior3.7 17.424 0.99076 

Bior4.4 19.973 0.99532 

Bior5.5 19.602 0.99491 

Bior6.8 18.858 0.99393 
 

• Compare symlets and biorthogonal wavelets 

Table (3) delineates a comparative analysis of the outcomes 

derived from the symlets and biorthogonal wavelet families. 

It is observed that the biorthogonal wavelet family, 

specifically the bior2.4 wavelet, exhibited superior 

performance in signal reconstruction. 

Table 3: Comparison between the best results of the symlets and 

Biorthogonal wavelet families 

Wavelet Type SNR (dB) (SCV) 

Sym2 18.8864 0.9939 

Sym4 18.4228 0.99312 

Sym5 18.7137 0.99364 

Bior2.4 20.255 0.99561 

Bior4.4 19.973 0.99532 

Bior5.5 19.602 0.99491 

 

 
Fig. 17: The difference between the best results of wavelet families 

for (SNR) 

 
Fig. 18: The difference between the best results of wavelet families 

for (SCV) 

Conclusions 
In the realm of digital signal processing methodologies, the 

fidelity of the reconstructed signal emerges as a paramount 

consideration. The fidelity of the reconstructed signal must 

exhibit no discernible deviation from that of the original 

signal, and it is imperative that the signal is devoid of 

extraneous noise. This objective is achieved through the 

application of signal metrics, specifically the signal-to-noise 

ratio (SNR) and the signal correlation value (SCV). 
 

1- The Symlets wavelet demonstrates significant utility in the 

analysis and reconstruction of the signal within the 

framework of the discrete wavelet transform. At the sym2 

level, we achieved the optimal signal quality for the Symlets 

wavelet, wherein the SNR value was recorded at 18.8864 dB, 

accompanied by a signal correlation value of 0.9939. 
 

2- The Biorthogonal wavelet exhibits commendable efficacy 

in the analysis and reconstruction of the signal when 

employed in the discrete wavelet transform. At the bior2.4 
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configuration, we achieved the highest signal quality for the 

Biorthogonal wavelet, where the SNR value was determined 

to be 20.2553 dB, alongside a signal correlation value of 

0.9956. 
 

3- In the present investigation, we undertook the 

processing of the signal and implemented a filtering 

procedure to mitigate the inherent noise through the 

discrete wavelet transform. Furthermore, we conducted 

a comparative analysis of two distinct families of 

discrete wavelet transforms and subsequently 

reconstructed the signal utilizing the discrete wavelet 

transform, which is recognized for its superior 

capabilities in both filtering and reconstructing the 

signal, demonstrating its efficacy particularly as the 

bior2.4 wavelet, which exhibited the most 

distinguished performance. 

 

Recommendations 
1- Dealing with heart rate signals associated with other types 

of noise, such as: EMG Noise and Electrode Motion 

Artifacts.  

2- Use another type of filter in the pre-treatment process, 

such as: FIR Notch  

3- Comparing other types of wavelet filters, such as: Haar 

wavelet, Daubechies, Coiflets, etc.  

4- Use real heart rate signals by dealing with one of the 

centers specialized in heart rate signals.  

5- Using compression as it removes unimportant or repetitive 

details to reduce the size of the signal. 
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