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عد
ُ
 تقييمًا الورقة هذه تقدم العالم. مستوى  على الكربون  لانبعاثات رئيسية ومصادرًا للطاقة المستهلكين أكبر بين من البيانات مراكز ت

 سحابي بيانات لمركز محاكاة بيئة ضمن التكعيبي والنموذج الخطي النموذج—الطاقة لاستهلاك رياضيين نموذجين بين مقارنًا

 الكربون، أكسيد ثاني وانبعاثات الطاقة، استهلاك إجمالي مثل الرئيسية، الأداء مؤشرات تحليل تم .CLOUDSIM أداة باستخدام

 ظروف عبر وذلك الحزم، وفقدان الاستجابة، وزمن (،CUE) الكربون  استخدام وكفاءة (،PUE) الطاقة استخدام وكفاءة والتكلفة،

 في الطاقة استهلاك ديناميكيات عن دقة أكثر بشكل وعبّر الحمل، لتقلبات أكبر حساسية التكعيبي النموذج أظهر وقد مختلفة. تحميل

ر بينما العالي، الاستخدام ذات الواقعية البيئات
ّ
 من %05 دمج أدى محافظة. وتقديرات الحسابات في سهولة الخطي النموذج وف

 في %3333 بنسبة انخفاضًا الخطي النموذج سجّل حيث والتكاليف، الانبعاثات من كل في كبير تقليل إلى المتجددة الطاقة مصادر

 في %3333 بنسبة انخفاضًا التكعيبي النموذج حقق بينما التكاليف، في %1031و ،CUE مؤشر في %5130و ،CO₂ انبعاثات

 أو الأداء على التأثير دون  النظيفة الطاقة فعالية يعزز  مما التشغيلية، التكاليف في %2132و ،CUE في %2332و ،CO₂ انبعاثات

  الخدمة. جودة

 

Introduction 
 In consideration of the rapid advancements in information 

technology and the escalating dependence on digital services, 

data centres have evolved into a fundamental element of the 

global digital infrastructure [1].They establish the requisite 

environment for the functioning of cloud computing services, 

big data analytics, artificial intelligence applications, and 

various contemporary technologies [2]. Accompanying this 

substantial proliferation, environmental and economic 

challenges have arisen concerning energy consumption and 

emissions associated with the operation of these centres, 

thereby underscoring the imperative to enhance energy 

efficiency and mitigate the resultant carbon footprint [3]. 
Cloud computing 

Cloud computing is a transformative technological 

advancement that enables remote access to storage, 

processing, and applications anytime and anywhere [4] 

[5].This model relies primarily on data centers that host 

massive global server infrastructures [5]. Since the 1990s, 

cloud systems evolved from local servers to large-scale 

platforms offered by major providers like Amazon, Google, 

and Microsoft [6,7]. This growth has introduced 

environmental concerns, particularly high energy 

consumption and increased carbon emissions. 
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Data Centre 

Data centers constitute the backbone of cloud computing 

architecture, providing the infrastructure for hosting 

computational resources and delivering services over the 

Internet through extensive networks of servers, storage, and 

communication systems [8] By centralizing computational 

workloads, data centers improve operational efficiency and 

reduce the need for localized infrastructure [9]which 

necessitates a balanced approach between performance and 

energy consumption [1]. With the rapid global expansion in 

the number and scale of data centers, it has become 

imperative to assess their resource utilization efficiency and 

adopt sustainability-oriented enhancement strategies [10]. 

Finally, networks are essential yet energy-intensive 

components. Devices such as switches and NICs contribute 

significantly to IT energy consumption [11]. Studies show 

that optical networking can reduce consumption by up to 

23% [12], while Google’s carbon-aware load management 

leverages network architecture to relocate workloads to 

lower-emission periods and regions [13]. 

This study focuses on core components directly linked to 

energy consumption and carbon emissions. Servers, which 

account for up to 60% of total energy use in data centers 

[14,15], are critical for service reliability and performance 

[16]. 

Energy Consumption and Environmental Implications of 

Data Centers 

Data centers, as the foundation of global digital 

infrastructure, are experiencing rapid growth in scale and 

capacity. This expansion has led to significant environmental 

concerns, particularly high energy consumption and carbon 

emissions [17]. Current estimates suggest that data centers 

consume about 1% of global electricity, a figure expected to 

reach 8,000 TWh by 2030 [17]. With over 8 million active 

data centers globally, growing at 12% annually, projections 

indicate their carbon footprint could account for 5.5% of total 

global emissions by 2025—equivalent to 43 million tons of 

CO₂ [18]. Such excessive energy use not only contributes to 

climate change but also raises public health risks and 

operational costs due to emission-related policies and carbon 

taxes [17,18,21] Moreover, carbon performance increasingly 

affects an organization’s sustainability reputation and 

alignment with global environmental standards [22].  

With the substantial proliferation and advancement of data 

centers, a principal challenge lies in reconciling optimal 

performance with diminished energy utilization and carbon 

emissions. The majority of sanctioned energy models fail to 

consider the implications of elevated loads or the 

incorporation of renewable energy sources, underscoring the 

necessity for more precise models that accurately represent 

this evolving paradigm. 

With the rapid growth of data centers, there has been 

increased scientific interest in studying their energy 

consumption and the associated environmental impact of 

carbon dioxide emissions. A summary of the most important 

related studies is presented in Table 1. Numerous studies 

have proposed estimation and optimization models, often 

incorporating renewable energy sources to reduce both 

operational costs and emissions. For instance, Dayarathna et 

al. classified 200 energy models into physical and software-

based categories, introducing a four-stage methodology that 

included hybrid models based on linear approaches [23] 

Sheme et al. addressed poor renewable energy utilization by 

developing a smart scheduling algorithm in a CloudSim 

environment, achieving 75% solar power usage and a 21% 

improvement over traditional methods [24]. Similarly, Wu et 

al. proposed the PCM-ENN framework using Elman neural 

networks to estimate energy consumption in cloud servers, 

outperforming traditional methods like linear regression and 

Joulemeter with high accuracy (1.6% on Linux, 3.7% on 

Windows) [25]. In response to the high carbon footprint of 

data center operations, Radovanović et al. presented Google's 

Carbon-Aware Computing platform, which strategically 

places tasks based on carbon intensity, yielding 1–2% energy 

savings during peak emission periods [4]. More recently, 

Sarkar et al. developed a multi-agent reinforcement learning 

(MARL) system for intelligent energy and carbon 

management, achieving notable reductions in energy use 

(14.4%), emissions (14.5%), and cost (13.7%) without 

performance compromise [26]Additionally, Pia et al. 

proposed a conceptual model with 1200 servers, integrating 

cooling systems and simulated via CloudSim. Their approach 

reduced energy consumption by 14% and improved the 

energy efficiency index from 1.37 to 1.16, demonstrating the 

value of resource-aware modeling in enhancing data center 

sustainability [2]. 

Data center companies are adopting several strategies to 

reduce their carbon footprint and promote environmental 

sustainability, including relying on renewable energy sources, 

improving infrastructure efficiency, and using artificial 

intelligence technologies to manage load. Prominent 

examples include Google's commitment to operating carbon-

neutral operations by 2030, Salesforce's goal of achieving 

carbon neutrality with 100% renewable energy, and 

Microsoft's goal of becoming carbon negative by 2030 and 

100% renewable energy by 2025.[27,28] 

Table 1: summarizes previous studies on energy and emissions 

management in data centers 

Ref. 

Approach / 

Model 

Type 

Tool/ 

Environment 
 

Main 

Objective 
 

Key 

Findings 
 

[23] 

Analytical 
Survey of 

Power 

Models 

200 hybrid 
models 

Classify 200+ 
energy models 

(hardware/softw

are based 

Proposed 4-
stage 

modeling 

framework 

[24] 

Smart 

scheduling 
for multi-

source 

energy in 
DCs 

 

CloudSim 

(100 hosts, 

200 VMs, 
120 kWh) 

 

Enhance 

renewable 
energy use 

by balancing 

solar, grid, 
battery power 

 

75% solar, 

20% grid, 

5% battery; 
+21% solar 

use vs 

traditional 
 

[25] 

Neural 
Network 

Modeling 

(PCM-ENN 

CloudSuite

, Sysbench 
 

Predict server 
energy using 

temporal 

performance 
metrics 

MRE: 1.6% 
(Linux), 

3.7% 

(Windows 

[26] Carbon-
aware task 

scheduling 

(Google) 
 

Google 
Data 

Centers 
 

Reschedul
e tasks 

based on 

grid 
carbon 

intensity 
 

1–2% 

energy 
reduction at 

peak 
carbon 

hours 

 

[26] Multi-

Agent 

Reinforcem
ent 

Learning 

(MARL) 

Real-world 

deployment 

Optimize 

energy and 

carbon with 
adaptive control 

-14.4% 

energy, -

14.5% CO₂, 
-13.7% cost 

[17] Simulation + 

AI-based 

resource 
management 

Enhanced 

CloudSim 

Reduce energy 

and emissions 

via intelligent 
optimization 

PUE 

reduced 

from 1.37 
to 1.16 
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Data centers are among the largest consumers of energy and 

significant contributors to global carbon emissions. This 

paper presents a comparative evaluation of two mathematical 

energy consumption models—the linear and cubic models—

within a simulated cloud data center environment using the 

CloudSim toolkit. Key performance indicators were 

analyzed, including total energy consumption, carbon dioxide 

(CO₂) and carbon dioxide equivalent (CO₂e) emissions, cost, 

power usage effectiveness (PUE), carbon usage effectiveness 

(CUE), response time (latency), and packet loss, under 

varying workload conditions.The cubic model demonstrated 

greater sensitivity to workload fluctuations and more 

accurately captured the dynamics of energy consumption in 

high-utilization environments, while the linear model offered 

computational simplicity and conservative estimates. The 

integration of 50% renewable energy sources led to 

substantial reductions in both emissions and operational 

costs. Specifically, the linear model recorded a 33.3% 

reduction in CO₂ emissions, a 71.5% improvement in CUE, 

and a 15.4% decrease in cost, while the cubic model achieved 

a 33.3% reduction in CO₂ emissions, a 23.2% improvement 

in CUE, and a 24.6% decrease in operational cost—

demonstrating the effectiveness of clean energy adoption 

without compromising system performance or service 

quality. 

The Role of Renewable Energy in Sustainable Data 

Centre Operations 
With the growing energy demands of data centers, the 

adoption of renewable energy sources has become a key 

strategy to enhance sustainability and reduce environmental 

impact [29]. Renewable energy technologies, particularly 

solar and/or wind, offer effective alternatives to fossil fuels 

by significantly lowering carbon emissions and operational 

costs [30-36]. Many global technology leaders, including 

Google, have successfully integrated these sources to power 

their data centers with clean, carbon-neutral electricity [26]. 

These efforts highlight the potential of renewables in 

supporting energy-efficient, environmentally responsible data 

center operations. 

Research Methodology 
This investigation employs a dual-phase simulation 

methodology utilizing CloudSim to assess the performance 

metrics and environmental consequences of two distinct 

power consumption models—linear and cubic—across 

varying load scenarios in a cloud data centers depicted in Fig. 

1 and elaborated upon in Table 2, the simulated data center is 

comprised of 1,000 servers, each endowed with 16 CPU 

cores, 16 GB of RAM, and 2 TB of storage capacity, 

alongside a network bandwidth of 1,000 Mbps per server. 

The duration of the simulation was established at 24 hours, 

during which three workload scenarios were scrutinized: 

10%, 50%, and 80% utilization, indicative of light, medium, 

and high processing loads, respectively [37-40]. The power 

parameters, such as idle power 120w and its maximum value 

350W, are shown in Table 3. 

Table 2: Parameters used as inputs to the simulation models 

No. of 

Data 

Center 

No. of 

Servers 

No. of 

Cores 

Memory 

Size 

(GB) 

Storage 

Capacity 

(TB) 

No. of 

Messages  

(MB\S) 

1 1000 8 16 2 10 

Operational cost: Operational cost denotes the financial 

expenditures associated with the functioning of a data center, 

predominantly encompassing the electrical energy 

consumption requisite for the operation of servers and 

ancillary components over a specified timeframe. This cost 

serves as a pivotal metric for assessing resource efficiency 

and the economic ramifications [41].  

 
Table 3: Parameters used as inputs to the simulation models 

Bandwidth 

(GBPS) 

Carbon 

Factor 

(coal) 

P_idle 

(Watt) 

P_max 

(watt) 

1 0.8 120  350  

 
Fig. 1: Research methodology flowchart 

 

Packet Loss: The loss rate signifies the proportion of data 

that is lost during the process of transmission across a 

communications network or within the confines of a data 

center environment. This metric is employed to appraise the 

quality of communication and the dependability of data 

transmission, given that a heightened loss rate adversely 

influences performance and operational efficacy [42,43].  

Carbon Footprint Metrics in Data Centers 

Carbon dioxide emissions (Q𝐶𝑂2) 

 CO₂ is a primary greenhouse gas resulting from fossil fuel 

combustion and is widely used in carbon footprint 

assessments due to its strong influence on global warming 

[44]. It is calculated using Eqn. (1) [45]:  

Q𝐶𝑂2 = 𝐸𝐶 × 𝐸𝐹𝐶𝑂2  (1) 

Where:  Q𝐶𝑂2 : Carbon dioxide emissions (kg/year), 𝐸𝐶 : 

Annual energy consumed (kWh/year), and 𝐸𝐹𝐶𝑂2 : Emission 

Model Selectionn 

Performance 

Indicator Selection 

Simulation Setup 

CloudSim 

 

Energy Consumption 

Estimation 

Energy Consumption 

Optimization 

End 

Start 

Energy Consumption 

Optimization 
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factor (kg CO₂/kWh). The 𝐸𝐹𝐶𝑂2  for several countries are 

presented in [46-48]   

Power Usage Effectiveness (PUE)  

measures the energy efficiency of data centers by comparing 

total facility energy to IT equipment energy; a value of 1.0 

indicates ideal efficiency [27]. This metric, however, 

excludes workload quality and should be used alongside 

environmental indicators, It is calculated using Eqn. (2) [49].  

𝑃𝑈𝐸 =
T FE

𝐼𝑇𝐸𝐸
 (2) 

Where: 𝑃𝑈𝐸: Energy Usage Efficiency, TFE : Total energy 

consumed by the data center, ITEE: Energy consumed 

directly by technical devices such as servers and storage. 

The Carbon footprint 

 quantifies the total direct and indirect greenhouse gas 

emissions from an activity—such as data centre operations—

expressed in CO₂e, and includes energy use, transport, and 

infrastructure  It is calculated based on energy consumption 

and the carbon intensity of each component [50]. It is 

calculated using Eqn. (3) [27]: 

𝐶𝐹 =∑𝐶𝐼𝑖 ∗ 𝐸𝑖

𝑛

𝑘=1

     (3) 

Where: 𝐶𝑓: Total Carbon Footprint, 𝐶𝐼𝑖: Carbon intensity of 

a resource or item i (in kg CO₂/kWh), 𝐸𝑖: Energy consumed 

by the item or source i (in kWh), 𝑛: Number of items or 

sources consuming energy. 

While various greenhouse gases are encompassed within the 

assessment of the carbon footprint, this investigation 

predominantly emphasizes carbon dioxide (CO₂) emissions, 

owing to their preeminent impact on overall emissions 

derived from energy consumption and their significant 

correlation with electricity utilization in data centers. 

Carbon Utilization Effectiveness (CUE) 

 measures the ratio of carbon emissions (CO₂) to IT energy 

consumption, offering insight into the environmental 

efficiency of IT operations It is calculated by dividing total 

CO₂ emissions by the energy consumed by IT equipment 

[51]. It is calculated using Eqn. (4) [27]: 

𝐶𝑈𝐸 =
𝑇CO₂  𝐸

ITEC  
           (4) 

Where: 𝐶𝑈𝐸:  Carbon utilization efficiency,𝑇CO₂  𝐸 : Total 

carbon dioxide (kg), ITEC : Annual Information Technology 

Energy consumption in information technology equipment 

(kWh). 

Power Consumption Models 

Energy consumption models are essential tools for analyzing 

and enhancing the efficiency of data center infrastructure. 

These models aim to accurately represent the relationship 

between resource utilization and energy consumption rates. 

In this context, the study focuses on utilizing selected models 

integrated within the CloudSim simulation platform to 

evaluate the impact of energy management strategies on 

system efficiency in terms of both performance and power 

consumption 

Linear Model 
The linear power model posits a direct correlation between 

CPU utilization and energy consumption, which escalates in a 

proportional manner relative to the workload, as represented 

by Eqn. (5). This model is employed due to its 

straightforwardness and efficacy in simulating systems 

operating under stable or moderate load conditions [52].  

𝑃(𝑢) = 𝑃𝑖𝑑𝑙𝑒 + (𝑃𝑚𝑎𝑥 − 𝑃𝑖𝑑𝑙𝑒). 𝑢  (5) 

Where: 𝑃(𝑢): Power consumed at a utilization level u, 𝑃𝑖𝑑𝑙𝑒: 

Power consumption at idle state, 𝑃𝑚𝑎𝑥 : Maximum power 

consumption at full utilization, 𝑢 : CPU utilization ratio 

(ranging from 0 to 1). 

Cubic Model 
The cubic power model is predicated on a nonlinear 

correlation between CPU utilization and energy consumption, 

wherein power utilization escalates more precipitously at 

elevated loads, as delineated by Eqn. (6) [52]. This model is 

favored due to its superior precision in depicting authentic 

energy dynamics under fluctuating and demanding 

workloads. 

𝑃(𝑢) = 𝑃𝑖𝑑𝑙𝑒 + (𝑃𝑚𝑎𝑥 − 𝑃𝑖𝑑𝑙𝑒). 𝑢
3         (6) 

Where: 𝑃(𝑢): Power consumed at a utilization level u, 𝑃𝑖𝑑𝑙𝑒: 

Power consumption at idle state, 𝑃𝑚𝑎𝑥 : Maximum power 

consumption at full utilization, 𝑢3  Cube utilization ratio 

(meaning that the increase in energy consumption becomes 

more severe the closer the load gets to 100%) The 

importance: 

Two stages were performed in this study: 

Estimation Phase: Power Consumption and CO₂ 

Emissions under Conventional Grid Energy. 

All energy is procured from the traditional electrical grid, 

presuming 0% contribution from renewable energy sources. 

The carbon emission factor is established at 0.8 kg CO₂/kWh, 

which is within the range reported by the International 

Energy Agency (IEA) in its "CO₂ Emissions in 2022" report. 

According to this report, countries heavily reliant on fossil 

fuels, such as coal and natural gas, can exhibit carbon 

intensities ranging between 0.7 to 1.0 kg CO₂/kWh, 

indicating a highly carbon-intensive energy profile [53]. 

Optimization Phase: Power Consumption and CO₂ 

Emissions under 50% Renewable Energy Integration. 

An integration of 50% renewable energy (as it announced in 

the Libyan energy strategy for the years 2025-2050 [54,55]) 

has been assumed in this optimization scenario, comprising 

approximately 35% solar and 15% wind energy. This 

configuration reflects a forward-looking energy mix inspired 

by the increasing global deployment of clean energy, 

Although the global average shares of solar and wind were 

5.5% and 11.2% respectively in 2023, this simulation 

envisions a more ambitious integration in alignment with 

future sustainable data center practices. 

The energy produced by a specific PV solar module can be 

estimated by [56,57]: 

𝑃𝑃𝑉 = 𝑃𝑆𝑇𝐶[1 + 𝛽𝑝(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑆𝑇𝐶)]
𝐻𝑡
𝐻𝑆𝑇𝐶

 (7) 

Where: 𝑇𝑆𝑇𝐶  and 𝑇𝑐𝑒𝑙𝑙 are the celll's surface temperature at 

Standard Test Condition, 𝛽𝑝 is the power temperature 

coefficient. The challenge that researchers will face is to find 

an empirical equation to determine the cell surface 

temperature 𝑇𝑐𝑒𝑙𝑙  [58]: 

𝑇𝑐𝑒𝑙𝑙 = 𝑇∞ + 7.8 × 10
−2𝐻𝑡 (8) 

The energy produced by a specific wind turbine can be 

estimated by [59,60]: 

𝑃𝑤 =

{
 
 

 
 
 𝑃𝑟𝑎𝑡                            ≤ 𝑢𝑡 < 𝑢𝑐𝑢𝑡−𝑜𝑓𝑓                     

𝑃𝑟𝑎𝑡 (
𝑢𝑡 − 𝑢𝑐𝑢𝑡−𝑖𝑛
𝑢𝑟𝑎𝑡 − 𝑢𝑐𝑢𝑡−𝑖𝑛

)    𝑢𝑐𝑢𝑡−𝑖𝑛 < 𝑢𝑡 < 𝑢𝑟𝑎𝑡
  

0          𝑢𝑡 ≤ 𝑢𝑐𝑢𝑡−𝑖𝑛     𝑂𝑅     𝑢𝑡 ≥ 𝑢𝑐𝑢𝑡−𝑜𝑓𝑓

 (9) 

Where 𝑃𝑟𝑎𝑡  is the rated power of the wind turbine in kW; 

𝑢𝑐𝑢𝑡−𝑖𝑛 , 𝑢𝑟𝑎𝑡  and 𝑢𝑐𝑢𝑡−𝑜𝑓𝑓  are the cull-in, rated and cut-off 

wind speed in m/s, and 𝑢𝑡 is the wind speed at the hub height 
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( ℎ𝑡 ) in m/s. Since the wind speeds ( 𝑢0 ) provided by 

meteorological stations or climate data platforms measured at 

a height (ℎ0 ) different from the wind turbine hub height 

(usually at 10 meters), it is essential to extrapolate them at the 

turbine's hub height. In this study, the exponential law was 

adopted based on recommendations from local researchers 

[59]. Therefore, the wind speed at the height of the wind 

turbine tower is calculated using the following equation [59]: 

𝑢𝑡 = 𝑢0 (
ℎ𝑡
ℎ0
)
∝

 (11) 

where,  is the wind shear coefficient which is dependent on 

the atmospheric stability and the location terrains [59]. In this 

work =1/7 [59]. 

The electrical characteristics of some types of PV solar 

modules are presented in [61, 62] and for some wind turbines 

are described in [63,64] 

Assumptions, Limitations, and Uncertainties 

Lack of access to a real data centre for primary data 

collection 

It was assumed that operational parameters, workload 

profiles, and hardware specifications could be accurately 

obtained from peer-reviewed studies, technical reports, and 

prior research. This assumption was necessary due to the 

unavailability of direct access to an operational data centre. 

While such secondary sources are widely accepted in 

simulation-based research, they may not fully capture the 

specific variations and operational patterns of an actual 

facility. 

Exclusion of cooling systems in the simulation 

The study assumed that the absence of cooling-related energy 

consumption modelling would not significantly alter the 

comparative performance evaluation of the tested power 

models. This exclusion was based on the fact that CloudSim 

does not natively support cooling system modelling [65]. 

However, in real-world scenarios, cooling systems can 

account for up to 40% of total energy use, meaning their 

omission limits the direct applicability of results to complete 

data centre operations.[66] 

Absence of a physical testing environment 

It was assumed, in line with prior simulation-based research, 

that CloudSim could yield sufficiently accurate comparative 

insights into the performance of different mathematical 

power models. While simulations enable controlled and 

repeatable parameter variation, they inherently fail to 

reproduce the full complexity, inefficiencies, and stochastic 

behaviours of an operational data centre [67].  

Limitations and Real-World Relevance 

These assumptions collectively introduce limitations to the 

study’s findings. The lack of real-world measurements and 

the exclusion of cooling systems constrain the precision of 

absolute energy and emissions values. Nevertheless, the 

comparative nature of the analysis—evaluating models under 

identical simulated conditions—ensures that relative 

performance trends remain valid and informative. In practice, 

further validation in an operational data centre would be 

required to confirm the applicability of these findings, 

particularly in environments where cooling and auxiliary 

systems play a significant role in total energy consumption. 
The main source of uncertainty in the current research is the 

information provided by the database, for example, there is a 

significant difference in the 𝐸𝐹𝐶𝑂2  for Libyan power 

generation sector, reaching up to 30%, which increases the 

uncertainty in the results and negatively impacts on decision-

making [68].   

Results and Discussion 
The findings elucidate the assessment and enhancement 

stages subsequent to the simulation procedure for the two 

models (linear and cubic), emphasizing environmental, 

energy, and performance metrics. The findings demonstrate 

the ramifications of incorporating renewable energy sources 

across various operational conditions. The tables present the 

evaluations of data center components alongside carbon 

dioxide metrics, which are considered a significant factor 

following the improvement phase. 
Energy Consumption Estimation stage 

Linear Power Model  

The aggregate power demonstrated a pronounced linear 

relationship with both the levels of resource utilization and 

the quantity of servers, with total consumption rising 

dramatically from 211,100 to 1,338,800 kW. Servers 

represented the primary source of power consumption, 

whereas network and memory utilization were solely 

determined by bandwidth and memory capacity. Carbon 

dioxide emissions exhibited a direct relationship with overall 

energy consumption, where the Carbon Usage Effectiveness 

(CUE) was consistently observed at 3.68, and the Power 

Usage Effectiveness (PUE) remained approximately at 1.0. 

As illustrated in Fig. 2, operational expenditures escalated in 

direct proportion to the workload and the number of servers, 

with negligible influence from memory and bandwidth 

parameters, as substantiated in Table 4.  

Table 4: The linear model at the estimation stage 

Utilization 

(80%) 

Utilization 

%(05)  

Utilization 

(10%) Component 

1330000 850000 210000 Servers (kW) 

8000 5000 1000 Network (kW) 

640 400 80 Memory (kW) 

1338800 855500 211100 Total power (kW) 

599782.40 383264 94572.80 CO2 (kg) 

160656 102660 25332 COST ($) 

1 PUE 

3.68 CUE 

60 75 95 Latency (ms) 

0.064 0.025 0.001 Packet Loss 

Probability 

 
 Fig. 2: Key outputs of performance indicators (PUE, CUE) using 

the linear model at the estimation stage 

 

Cubic Power Model 

The cubic model exhibited an augmented degree of energy 

consumption concomitant with an increased rate of CPU 

utilization, thereby underscoring its non-linear attributes. 

Servers emerged as the predominant source of power 

consumption, while both carbon dioxide emissions and 

carbon footprint escalated in correlation with the quantity of 

0.96

0.98

1

1.02

1.04

1.06

Utilization(10%) Utilization(50%) Utilization(80%)

PUE CUE
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servers and processing cores. The Power Usage Effectiveness 

(PUE) metric exhibited stability at 1.09, whereas the Carbon 

Usage Effectiveness (CUE) experienced a decline to 2.33, 

signifying enhanced environmental efficiency under 

fluctuating load circumstances. As illustrated in Fig. 3, 

operational expenditures escalated in tandem with server 

load, with minimal impact attributable to memory or 

bandwidth consumption. Furthermore, a decrease in latency 

was noted as the load intensified, while packet loss increased 

due to network congestion, as evidenced in Table 5. 

Table 5: The cubic model at the estimation stage. 

Utilization 

(80%) 

Utilization 

%(05)  

Utilization 

(10%) Component 

102155 50555 05255 Servers (kW) 

4000 2500 500 Network (kW) 

343.46 169.71 15.18 Memory (kW) 

188229.54 93271.53 60864.29 Total power (kW) 

78303.49 38800.96 25319.54 CO2 (kg) 

129936 54660 8052 COST ($) 

1351 PUE 

2333 CUE 

69.6 82.5 96.9 Latency (ms) 

0.0768 0.3 0.0012 Packet Loss 

Probability 

 
Fig. 3: Key outputs of performance indicators (PUE, CUE) using the 

cubic model at the estimation stage 

Energy optimization Estimation stage 

Linear Power Model  

Incorporating 50% renewable energy into the 

PowerModelLinear framework significantly improved 

environmental and economic efficiency. CO2 emissions were 

reduced by 33.3%, and the equivalent ratio was significantly 

reduced by 33.4% thanks to the adoption of a cleaner energy 

mix, while operating expenses were significantly reduced 

across all usage levels. The improvement rate reached 

15.42%, and the power usage effectiveness (PUE) stabilized 

at 1.0, indicating optimal energy utilization. The carbon 

usage effectiveness (CUE) also improved significantly, 

decreasing from 3.68 to 1.05. This was achieved by 71.4% 

Additionally, network performance metrics, such as latency 

and packet loss, remained within acceptable limits, 

confirming the maintenance of quality of service. Table (6) 

summarizes these results. 

Cubic Power Model 

The integration of 50% renewable energy into the Cubic 

Power Model yielded clear environmental benefits, with 

carbon dioxide (CO₂) emissions reduced to 60,233.45 kg, 

reflecting an improvement rate of 33.3%. Meanwhile, carbon 

dioxide equivalent (CO₂e) emissions decreased to 374,652.07 

kg, reaching a reduction rate of 23.08%, indicating a 

significant enhancement in environmental performance. 

Operating expenses recorded substantial decreases across all 

utilization levels, attributed to the lower cost of electricity 

generated     from    renewable    sources,   with    an    overall 

improvement of 24.6%. The Power Usage 

Effectiveness(PUE) remained stable at 1.09, while the 

Carbon Usage Effectiveness (CUE) improved from 2.33 to 

1.79,  representing  a   reduction    of      23.10%.  Despite the 

Table 6: The linear model in the optimization phase when 50% 

renewable energy is incorporated. 

Utilization 

(80%) 

Utilization 

%(05)  

Utilization 

(10%) Component 

1330000 850000 210000 Servers (kW) 

8000 5000 1000 Network (kW) 

640 400 80 Memory (kW) 

1338800 855500 211100 Total power (kW) 

171366.40 109504 27020.80 CO2 (kg) 

135888.20 86833.25 21426.65 COST($) 

1 PUE 

1.05 CUE 

60 75 95 Latency (ms) 

0.064 0.025 0.001 Packet Loss 

Probability 

nonlinear increase in total energy consumption with higher 

utilization, servers remained the primary contributors to 

energy usage. Network performance indicators, such as 

latency and packet loss, stayed within optimal operational 

thresholds, reflecting the system’s continued stability and 

efficiency. These results are presented in Table 7. 

Table 7: The cubic model in the optimization phase when 50% 

renewable energy is incorporated. 

Utilization 

(80%) 

Utilization 

%(05)  

Utilization 

(10%) Component 

102155 50555 05255 Servers (kW) 

4000 2500 500 Network (kW) 

343.46 169.71 15.18 Memory (kW) 

188229.54 93271.53 60864.29 Total power (kW) 

60233.45 29846.89 19476.57 CO2 (kg) 

19105.30 9467.06 6177.73 COST ($) 

1351 PUE 

1. 79 CUE 

69.6 82.5 96.9 Latency (ms) 

0.0768 0.3 0.0012 Packet Loss 

Probability 

 

The fixed power usage efficiency (PUE) values and fixed 

consumption patterns of critical components, such as servers, 

memory, and the network, reflect the role of renewable 

energy. Renewable energy serves only as an alternative 

source of electricity generation; it does not affect 

infrastructure design, operation, or energy demand. Thus, 

while the energy source becomes cleaner and more cost-

effective, the actual energy use by system components 

remains unchanged. Therefore, noticeable improvements are 

limited to environmental and financial aspects, without 

impacting technical performance or utilization levels. 

In order to substantiate this assertion, Table 8 delineates a 

comparative analysis between the present investigation and a 

contemporary related inquiry [26], emphasizing congruities 

and divergences in aims, methodologies, and results. 

0
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Conclusions  
The choice of a data centers energy consumption model 

should be aligned with its workload characteristics and 

sustainability goals. While the linear model is simple, easy to 

compute, and produces conservative estimates, it has 

limitations in high-load environments and can lead to 

overestimation of carbon emissions. In contrast, the cubic 

model demonstrates more accurate performance and lower 

emissions and costs, especially when renewable energy 

sources are integrated into the infrastructure. Therefore, the 

cubic model is recommended as an effective and 

comprehensive    reference   framework  for modeling energy 

consumption in green data centers seeking to improve 

environmental efficiency and reduce their carbon footprint. 

Due to its better ability to represent the nonlinear relationship 

between load and energy consumption, it achieves more 

accurate estimates, especially at high loads, and contributes 

to reduced emissions and operational costs. 

Table 8: Comparison between the current study and previous studies 

Ref. 

Approach 

Model Type Tools 

Main 

Objectives Key findings 

[26] Multi-Agent 

Reinforcement 

Learning 
(MARL) 

Real-world 

deployment 

Optimize 

energy and 

carbon 
with 

adaptive 

control 

-14.4% 

energy, -

14.5% CO₂, -
13.7% cost 

E.M.Ali 

(2025) 

Simulation 

using Linear, 

Cubic models 

CloudSim Estimate 

optimize 

energy, 
emissions 

& cost 

with 50% 
renewable 

energy 

The cubic 

model is the 

best, reducing 
CO2 

emissions by 

33.3%, costs 
by 24.6%, and 

energy 

consumption 
by 23%, 

without 

compromising 

performance. 

 
Recommendations for Future work 
Future directions should focus on expanding energy models 

to incorporate additional subsystems such as cooling, which 

represents a major energy consumer in data centers. 

Moreover, the integration of hybrid or AI-based modeling 

approaches can enhance adaptive optimization capabilities. 

Simultaneously, improving software design and algorithm 

efficiency can reduce redundant server operations, leading to 

lower energy usage and emissions. Operational strategies 

such as virtual machine consolidation and dynamic load 

balancing, coupled with customized carbon mitigation 

techniques, are essential to ensure a balanced approach 

between performance and sustainability. 
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