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إطار عمل للكشف عن الأعطال والصيانة التنبؤية لأنظمة الطاقة الشمسية الكهروضوئية في المناخات القاسية، 

علم الآلي مدعوم بتقنية إنترنت الأشياء ومعتمد على تحليل التشوه التوافقي الكلي: دمج نظرية التصميم الوظيفي والت

 الأداء ومرونة لتحسين

 3،عبدالقادر الشريف2، محمد علي محمد الصيد 1عمر كرال،  *،1للاهم عمر بن دلة

 الملخص  الكلمات المفتاحية  

 نظام إدارة الطاقة

 كشف الأعطال 

 ةتحويل فورييه السريع

 المراقبة الآنية 

 التعلم الآلي 

ناعية الاصط تلخص هذه الدراسة تطوير نظام ذكي لإدارة الطاقة يعتمد على إنترنت الأشياء والشبكات العصبية 

لنظام واجه ايلتحسين أداء أنظمة الطاقة الشمسية الكهروضوئية في البيئات القاسية مثل بني وليد في ليبيا. 

لا وى الأداء باً علالكهروضوئي تحديات بيئية مثل ارتفاع الحرارة وتراكم الغبار والتظليل الجزئي، والتي تؤثر سل

مقترح على دمج يعتمد النظام ال .طةية بسبب اعتمادها على نماذج بسيمكن للأنظمة التقليدية التعامل معها بدق

توافقي شوه المستشعرات منخفضة التكلفة مع تحليل طيفي قائم على تحويل فورييه المنفصل لاستخراج مؤشرات الت

بؤ آلي للتن ج تعلمالكلي من موجات الجهد والتيار، مما يتيح الكشف المبكر والدقيق عن الأعطال. كما يستخدم نماذ

اوز ؤ بفضل تجالتنب ر تدهور الأداء مع مرور الوقت. أظهرت النتائج التجريبية دقة عالية فيبإنتاجية الطاقة وتقدي

شمسية من ، مع رصد انخفاض نسبة الأداء اليومي للألواح ال9.5لأقل من  RMSE وانخفاض 0.92قيمة  R² مؤشر

هجينة التي تجمع بين منهجيتها ال تكمن أهمية الدراسة في .% خلال فترة المراقبة نتيجة العوامل البيئية93% إلى 97

ها، لر المخطط وقف غيتحليل الإشارات الفيزيائية والذكاء الاصطناعي، ما يسمح بالصيانة التنبؤية وتقليل فترات الت

ة للتطوير كلفة قابللة التوزيادة إنتاج الطاقة من خلال التدخلات في الوقت المناسب. يتيح النظام أيضًا بنية مرنة وقلي

 لشمسية فيالطاقة ر على الحافة. بشكل عام، تساهم نتائج البحث في تعزيز استدامة وكفاءة البنية التحتية لوالنش

 .البيئات الصعبة، وتقدم نموذجًا ذكياً وقابلاً للتكرار عالمياً لإدارة الطاقة
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KEYWORDS 

This research introduces an advanced energy management approach for PV setups situated in 

demanding semi-arid environments, specifically focusing on Baniwalid, Libya. Conventional 

energy management systems often depend on fixed parameters or basic models, which only 

address a limited scope of environmental variables. Such systems lack the adaptability to 

effectively respond to fluctuating conditions like intense heat, dust buildup, and intermittent 

shading, all of which can undermine solar panel performance. To overcome these limitations, the 

study incorporates artificial neural networks within an Internet of Things-based framework. This 

system utilizes a network of affordable sensors to collect real-time operational data from PV 

arrays. Via applying Discrete Fourier Transform techy, the system extracts key features such as 

Total Harmonic Distortion from electrical signals, which serve as early indicators of potential 

faults. Machine learning algorithms then leverage this data to forecast energy output as well as 

monitor the daily performance ratio, enabling the detection of gradual performance declines. 

During a ten-day observation period, the framework recorded a decrease in DPR from 97% to 

93%, primarily attributed to temperature swings as well as dust accumulation on solar modules. 

The ANN-based model successfully correlated predicted outcomes with actual measurements, 

highlighting its potential for accurate system health assessment. The hybrid methodology 

combining physics-based signal analysis with data-driven intelligence facilitates proactive 

maintenance strategies that minimize unexpected interruptions, optimize energy yields, and can be 

efficiently deployed at the network edge. By transforming PV systems into adaptive, self-

monitoring assets, this work enhances operational resilience under extreme conditions and offers a 

scalable solution that can be applied to smart energy management globally. 

Energy management system; 

 Fault Detection; 

 Fast Fourier transform; 

Real-Time monitoring; 

 Machine learning. 
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Introduction 
Driven by concerns about climate change and global warming, 

the global renewable capacity by the end of 2025, is expected 

to see massive growth, with projections suggesting solar PV 

alone will surpass 3,000 GW, contributing significantly to a 

total capacity projected to approach or exceed 6,000 GW, as 

annual additions are forecast to hit a record ~793 GW. This 

growth in the RE market reflects a global shift towards 

renewable and sustainable energy technologies [1]. 

The integration of Internet of Things (IoT) technology into 

Energy Management Systems (EMS) has significantly 

improved the daily performance ratio of Solar Panels [2]. 

Furthermore, EMSs based on the Internet of Things offer real-

time monitoring and control requirements that enhance 

dependability and energy economy. This research also looks at 

the use of IoT technology for controlling and enhancing solar 

panel performance [3], addressing significant issues and 

providing a clear implementation process. The energy 

management sector has seen a lot of impact thanks to the 

evolvement of Internet of Things (IoT) technology [4]. How 

better can utilize energy than through smart technologies the 

introduction of IoT in energy systems has facilitated the 

development of innovative ways to optimize energy usage 

thereby enhancing the Daily Performance Ratio of renewable 

energy sources. Solar energy is one of the most important 

renewable energy sources. It is seen that solar energy has the 

potential to replace conventional energy sources in a 

sustainable and eco-friendly manner. The focus of this study 

was on IoT-based energy management technology to improve 

the solar panel output. To help with analyzing, decision-

making, and data collection with real-time.  The use of IoT will 

help monitor and optimize energy consumption, thus improving 

the overall Daily Performance Ratio of the solar panels. These 

systems may have collected data on various parameters such as 

solar irradiance, temperature, and orientation of the panel that 

subsequently adjust the operational parameters dynamically for 

better energy benefits [5,6]. IoT energy management systems 

guarantee no problems with the solar panels. It monitors 

everyday activities while also foreseeing faults to avoid larger 

troubles like breakage for max efficiency. Using machine 

learning in these systems can improve their abilities to predict 

things better and intervene faster [7]. Recent studies have 

determined the Daily Performance Ratio of IoT in improving 

the performance of solar energy systems [8]. For example, [9] 

study elucidated the significance of IoT for real-time 

monitoring and control of solar panels that, as a result, augment 

Daily Performance Ratio of Working Energy significantly. 

Likewise, studies by [2-5] said that the IoT-enabled energy 

management systems successfully reduce operational costs and 

improve energy outcome. Using IoT in solar energy solutions 

doesn't only support global sustainability of energy solutions 

such as solar, but it also helps in addressing the challenges 

faced in energy management in the remote, off-the-grid 

locations. Thanks to improvements in the IoT Technology, it is 

possible to create more resilient and adaptive energy 

infrastructures capable of operating under some environmental 

conditions and energy demands [9]. The aim of this research is 

to IoT based energy management techniques for optimum solar 

power generation. The analysis of literature to identify best 

practices and provide innovative solutions to maximize the 

daily performance ratio and reliability of solar energy systems 

will be shown in case study. 

Materials and Methods 
Experimental location and deployment environment 
The experimental study was done at a personal solar 

photovoltaic (PV) installation site which managed by 

researcher in Baniwalid, Libya. The site which is dedicated 

research and data collection laboratory, is situated in (a semi-

arid region) with coordinates about at 31.8500° N as well as 

14.0333° E. Furthermore, this geographical location offers high 

solar insolation levels all over the year, with an average daily 

global horizontal irradiance (GHI) exceeding 5.5 kWh/m², 

making it highly suitable for solar energy research. The PV 

system under investigation is a small-scale, grid-independent 

solar array made up of polycrystalline silicon modules attached 

on a fixed-tilt structure facing south at a 30° angle, which is 

almost perfect for optimizing the region's annual solar energy 

capture. Therefore, the installation of standard battery storage, 

charge controllers, and power conditioning devices are 

included, that allowing for thorough electrical and 

environmental parameter monitoring. Moreover, a personal 

solar farm is a real-world testbed for the implementation and 

validation of an Internet of Things (IoT)-based (EMS) 

combined with sophisticated data analytics and predictive 

modeling methods is this personal solar farm. On the other 

hand, this site is privately managed and run by researchers, 

enabling flexible setup, quick prototyping, and ongoing access 

for long-term data validation, system maintenance, as well as 

sensor calibration as presented in Figure 2. A step-by-step 

flowchart diagram of the system. 

The environmental characteristics include high summertime 

daytime temperatures which is normally above 40°C and 

mostly clear skies with little seasonal in Table 1. This condition 

provided a reliable setting for evaluating the effects of heat and 

radiation on PV performance, with regard to fault detection and 

Daily Performance Ratio degradation under actual operational 

loads. The solar panels and sensing units and minimal signal 

interference, IoT sensors and communication modules were 

deployed closely on-site. Thus, natural soiling, dust buildup, 

and temperature changes, all of which are common in desert 

and dry areas and have a big impact on solar panel output, 

which the data was gathered. An important factor in the 

adoption of renewable energy in remote and underserved areas 

is the performance of IoT-integrated (EMS) in off-grid, 

decentralized, and resource-constrained environments.  

Instrumentation and Measurement Devices   

An IoT-based Energy Management System (EMS) was 

developed by a privately owned PV installation in Bani Walid, 

Libya. The experimental was used instrumentation which are 

high-resolution, real-time monitoring of environmental and 

electrical parameters that critical to solar panel performance. 

Therefore, all the used devices were selected for their 

reliability, compatibility and cost-effectiveness, with embedded 

IoT architectures, ensuring that seamless integration into a 

scalable monitoring ecosystem. The inter of the designed 

system comprises a network of precision sensors, an embedded 

microcontroller unit (MCU) in Table 1, wireless 

communication modules, and analytics tools, entering edge-to-

cloud data acquisition and processing chain as presented in 

Table 1. Instrumentation and Measurement Devices. Below is a 

detailed description of each component used in the 

instrumentation setup.  
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 System Architecture   

Each sensor is physically mounted in close proximity to the 

solar panel array to ensure representative measurements. The 

BME280 sensor is placed under partial shade to avoid direct 

heating while still capturing ambient in Table 1. Air 

temperature, whereas the pyranometer is co-planar with the PV 

surface to measure plane-of-array (POA) irradiance accurately. 

The INA219 sensor is connected with the solar panel output to 

monitor current flow. Whereas to measure terminal voltage 

which is divider circuit is connected in parallel as presented in 

Table 1. On the cloud side, data is ingested into ThingSpeak, 

where it is stored in a time-series database csv file format and 

made accessible through a customizable dashboard. Derived 

performance metrics, for instance, Daily Performance Ratio 

(%), energy output (kWh), fault detection status, and 

maintenance alerts are computed using MATLAB-compatible 

scripts hosted on the platform, as reflected in Table 3. In 

addition, Fourier-based signal analysis is applied to detect 

distortions in the voltage as well as current waveforms. The 

Discrete Fourier Transform (DFT) is utilized to compute 

spectral components, enabling the calculation of Total 

Harmonic Distortion (THD), which serves as an early indicator 

of grid synchronization issues. 
 Methodology 
System Design 

Hardware: Solar panels, sensors (irradiance, temperature, 

voltage, current), microcontrollers as presented in Figure 1 and 

Table 1, communication modules (Integrated Wi-Fi (ESP32)), 

and storage devices. 

Software: Firmware development, data collection software, and 

cloud-based data analytics platforms. 

Data Acquisition: Sensors collect data on solar irradiance in 

Table 1, temperature, and electrical parameters (voltage and 

current) of the solar panels as presented in Figure 1. This data is 

transmitted via IoT communication protocols to a central server 

for processing. 

Data processing: is all about the steps that a data is taken 

through in order to cleanse it of noises so as to ensure that the 

right data which can be useful to the study is made available for 

analysis.  

Analysis: The performance measurement is done using several 

algorithms such as performance ratio, energy output, fault etc. 

The integration phase: deals with configuring the IoT 

gateways which helps in data aggregation and their 

transmission to a cloud platform. Cloud storage and processing 

of data and analytics provide scalability and efficient operation 

to perform data management.  

User Interface: Designed to monitor and control online and 

inform users about solar panel performance and issues so that 

the users can make decisions, as shown in Figure 1 and Table 1.

Table 1: A detailed description of instrumentation and measurement devices 

Parameter 

Measured 

Device/Sensor Model/Type Measurement 

Range 

Accuracy Sampling 

Interval 

Interface & 

Integration 

Functional 

Role 

Solar 

Irradiance 

Pyranometer Apogee SP-212 (or 

equivalent analog 

sensor) 

0–2000 W/m² ±5% of 

reading 

10 minutes Analog output 

(0–2.5 V) → 

ESP32 ADC 

solar radiation 

on panel 

surface 

Ambient & 

Panel 

Temperature 

Digital 

Temperature 

and Humidity 

Sensor 

BME280 (I²C 

interface) 

-40°C to +85°C ±0.5°C 10 minutes I²C bus 

connected to 

ESP32 

Monitors 

environmental 

conditions   

DC Voltage Resistive 

Voltage 

Divider + 

Precision 

Amplifier 

Custom circuit with 

10:1 scaling 

0–30 V ±0.8% 10 minutes Analog input 

to ESP32 

Measures 

real-time 

output voltage   

DC Current High-Side 

Current 

Sensor 

INA219 (bi-

directional 

current/power 

monitor) 

0–3.2 A ±1% 10 minutes I²C interface calculates 

power and 

efficiency 

Microcontroller 

Unit (MCU) 

Low-Power 

Embedded 

Processor 

ESP32-WROOM-32 3.3 V operating 

voltage 

— — Wi-Fi 802.11 

b/g/n, 

Bluetooth 4.2 

  

preprocessing, 

and 

transmission 

Communication 

Module 

Wireless 

Transceiver 

Integrated Wi-Fi 

(ESP32) 

Up to 100 m 

(indoor), 300 m 

(open field) 

— 10-minute 

intervals 

MQTT over 

TLS/SSL 

Securely 

transmits 

sensor data to 

cloud server 

Data 

Aggregation & 

Edge 

Processing 

Optional Edge 

Node 

Raspberry Pi 

(standby mode) 

— — — Ethernet/Wi-Fi  preprocessing 

if needed 

Cloud Platform Data Storage 

& Analytics 

ThingSpeak / AWS 

IoT Core 

Real-time 

dashboard and 

API access 

— 10-minute 

sync 

HTTPS/MQTT 

protocol 

Stores, 

visualizes, 

and analyzes  

Power 

Conversion & 

Conditioning 

Charge 

Controller & 

Inverter 

PWM-based MPPT 

Controller + 5kVA 

Inverter 

12 V DC → 230 

V AC, 50 Hz 

— Continuous Connected to 

load side 

monitored for 

stability and 

harmonic 

distortion 

Technical features of the solar panel used  
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Because of its reliable performance, it can be used to assess 

environmental impacts and the performance of IoT-based 

monitoring, panel was placed at 30° tilt fixed south which is a 

routine procedure so that energy yield is maximized for the 

latitude of the site. This tilt and azimuth were chosen to 

maximize annual energy yield for the geographical latitude of 

the test site [10,11]. The fixed-tilt design is stable and requires 

little to no maintenance and is not complicated by any dynamic 

tracking mechanisms. By using IoT sensors, we can 

continuously monitor the performance of the system, as well as 

the environmental parameters.  initial measurements indicated a 

high-performance ratio (pr) of almost 97%. However, under 

high ambient temperature conditions and significant dust, the pr 

decreased by 4% over a period of ten days primarily due to 

temperature and soiling impacts, higher temperatures reduced 

voltage and maximum power output [12,13], dust accumulation 

reduced irradiance and current [14]. Both observations are 

consistent with findings in semi-arid regions [15]. Thus, it is 

important to continuously monitor the PV solar fields using IoT 

and the other technical specifications that affect pv operation in 

real conditions. The IoT-ems architecture was fully integrated 

into the PV module. the electrical output (voltage and current) 

and surrounding environmental conditions (irradiance using an 

apogee sp-212 pyranometer and ambient temperature via a 

bme280 sensor) were sampled every 10 minutes this high-res 

data stream enabled the computation of the instantaneous 

performance parameters, such as system pr, and facilitated the 

application of robust signal processing (eg dft-based thd 

analysis) for the detection of early signs of failure, inverter 

failure or partial shadowing. According to experts, this data was 

the main input of machine learning models, predicting for 

example energy yield and when maintenance was necessary. 

Therefore, linking the technical features of the modules to the 

intelligent control of the system. 

Performance Analysis 

Performance analysis involves benchmarking Daily 

Performance Ratio metrics, conducting predictive maintenance 

using machine learning models, and evaluating the system’s 

overall effectiveness. IoT Based Energy Management systems 

as well as refer to it while describing the system design, data 

acquisition, processing, integration, and user interface. The 

description of the methodology is structured around this 

flowchart in Figure 1. 

The system evaluation  

Experimental Location and Deployment Environment as 

presented in Figure 2 a step-by-step flowchart diagram of the 

system and the setup of the personal solar farm used as a 

testbed. Field testing in a real-world solar farm and the data 

have been collected as presented in Figure 3 and Table 2. 

This research has collected user feedback to refine system 

functionality. This research conducting a cost-benefit analysis 

to assess the economic viability of the IoT-based EMS. The 

Mathematical implementation by using Fourier Series 

Expansion. 

Let 𝑓(𝑡) be a piecewise continuous, periodic function with 

period 𝑇. Then 𝑓(𝑡) can be represented as a Fourier series [16]: 

𝑓(𝑡) = 𝑎0 +∑  

∞

𝑛=1

[𝑎𝑛cos⁡(𝑛𝜔0𝑡) + 𝑏𝑛sin⁡(𝑛𝜔0𝑡)] (1) 

 Where:              

 𝜔0 =
2𝜋

𝑇
 : fundamental angular frequency, 

 𝑎0 =
1

𝑇
∫  
𝑇

0
𝑓(𝑡)𝑑𝑡 : DC component, 

 𝑎𝑛 =
2

𝑇
∫  
𝑇

0
𝑓(𝑡)cos⁡(𝑛𝜔0𝑡)𝑑𝑡, 

 𝑏𝑛 =
2

𝑇
∫  
𝑇

0
𝑓(𝑡)sin⁡(𝑛𝜔0𝑡)𝑑𝑡. 

 

  
Figure 1: Flow chart for IoT Based Energy Management systems 

 

 
Figure 2: A step-by-step flowchart diagram of the system 
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Figure 3: The Bani Walid indoor experiment design 

 

 

 
 

Figure 4: Average Voltage and Current THD by Climate Type and 

IoT-Based Solar Energy Management System 

 

Table 2: Performance Matrix  

 

Table 3: Performance metrics across 6 climate condition 

Record ID Climate Type 

Solar Irradiance 

(W/m²) 

Temperature 

(°C) 

Voltage 

(V) 

Current 

(A) Timestamp 

1 Dry_SemiArid 800 25.0 12.50 5.10 2023-01-01 12:00:00 

2 Dry_SemiArid 820 26.0 12.48 5.15 2023-01-01 12:10:00 

3 Sunny_Desert 880 42.0 11.90 5.50 2023-01-01 12:20:00 

4 Sunny_Desert 900 43.5 11.80 5.60 2023-01-01 12:30:00 

5 Cloudy_Temperate 300 18.0 12.70 2.50 2023-01-01 12:40:00 

6 Cloudy_Temperate 280 17.5 12.72 2.40 2023-01-01 12:50:00 

7 Rainy_Tropical 450 30.0 12.30 3.80 2023-01-01 13:00:00 

8 Rainy_Tropical 400 29.5 12.35 3.60 2023-01-01 13:10:00 

9 Temperate_Moderate 500 22.0 12.55 4.20 2023-01-01 13:20:00 

10 Temperate_Moderate 520 22.5 12.52 4.30 2023-01-01 13:30:00 

11 Cold 780 5.0 13.20 5.80 2023-01-01 13:40:00 

12 Cold 760 4.5 13.25 5.70 2023-01-01 13:50:00 

13 Dry_SemiArid 790 38.0 12.00 5.00 2023-01-02 12:00:00 

14 Sunny_Desert 850 45.0 11.70 5.70 2023-01-02 12:10:00 

15 Cold 740 3.0 13.30 5.60 2023-01-02 12:20:00 

 

Record ID Efficiency (%) Energy Output (kWh) Fault Detection Maintenance Required Timestamp 

1 97.0 1.30 No No 2023-01-01 12:00:00 

2 96.8 1.29 No No 2023-01-01 12:10:00 

3 96.5 1.27 No No 2023-01-01 12:20:00 

4 96.3 1.26 No No 2023-01-01 12:30:00 

5 96.0 1.25 No No 2023-01-01 12:40:00 

6 95.7 1.24 No No 2023-01-01 12:50:00 

7 95.5 1.23 No No 2023-01-01 13:00:00 

8 95.2 1.22 No No 2023-01-01 13:10:00 

9 94.8 1.20 No No 2023-01-01 13:20:00 

10 94.5 1.19 No No 2023-01-01 13:30:00 

11 94.0 1.17 Yes Yes 2023-01-02 10:00:00 

12 93.8 1.16 No No 2023-01-02 12:00:00 

13 93.5 1.15 No No 2023-01-02 12:10:00 

14 93.2 1.14 No No 2023-01-02 12:20:00 

15 93.0 1.13 No No 2023-01-02 12:30:00 
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Alternatively, in complex exponential form: 

 𝑓(𝑡) : A piecewise continuous, periodic function 

representing a time-domain signal, for instance, 

voltage or current; from the solar panel system. 

 𝑇 : The fundamental period of the periodic function 

𝑓(𝑡), in seconds, over which the signal repeats. 

 𝜔0 =
2𝜋

𝑇
 : The fundamental angular frequency (rad/s) 

of the periodic signal. 

(𝑡) = ∑  

∞

𝑛=−∞

𝑐𝑛𝑒
𝑖𝑛𝜔0𝑡 , 𝑐𝑛 =

1

𝑇
∫  
𝑇

0

𝑓(𝑡)𝑒−𝑖𝑛𝜔0𝑡𝑑𝑡 (2) 

 

This form is optimal for digital implementation and spectral 

analysis. 

Application to Solar Panel Output Signals  

(t) ≈
1

𝑁
∑  

𝑁−1

𝑛=0

𝑉𝑛 ⋅ 𝑒
𝑖2𝜋𝑛𝑡/𝑇  (3) 

 
Step 3: Reconstruct and Analyze Signal Components 

Decompose 𝑣(𝑡) into [16]: 

 DC component: 𝑉0/𝑁 

 Fundamental (𝐧 = 𝟏):
1

𝑁
𝑉1𝑒

𝑖2𝜋𝑡/𝑇 

 Harmonics ( n ≥ 2 ): higher-order terms 

 THD𝑉 : Total Harmonic Distortion for voltage, defined 

as THD𝑉 =
√∑  ∞

𝑛=2  𝑉𝑛
2

𝑉1
× 100%, where 𝑉𝑛 is the RMS 

value of the 𝑛-th harmonic voltage and 𝑉1 is the RMS 

value of the fundamental component. 

 THD𝐼  : Total Harmonic Distortion for current, defined 

analogously to THD𝑉. 

 ⁡𝑃(𝑡) : Instantaneous power, given by 𝑃(𝑡) = 𝑣(𝑡) ⋅
𝑖(𝑡), where 𝑣(𝑡) and 𝑖(𝑡) are the instantaneous voltage 

and current signals. 

 𝑃avg  : Average (real) power, calculated as 𝑃avg =
1

𝑇
∫
0

𝑇
 𝑃(𝑡)𝑑𝑡, representing the useful power delivered 

by the system. 

 𝑉𝑛 , 𝐼𝑛 : Magnitudes of the 𝑛-th harmonic components 

of voltage also current, respectively, obtained via 

Discrete Fourier Transform (DFT). 

 𝑁 : Number of significant harmonics retained in the 

analysis after optimal truncation for computational 

Daily Performance Ratio. 

MSE : Mean Square Error between the original signal and its 

reconstructed version, defined as MSE =
1

𝐿
∑𝑘=1
𝐿  |𝑥[𝑘] −

𝑥̂[𝑘]|2, where 𝑥[𝑘] is the original signal sample, 𝑥̂[𝑘] is the 

Let 𝑣(𝑡) and 𝑖(𝑡) be the periodic voltage and current signals 

sampled from the solar panel via loT sensors (Table 1). Assume 

sampling frequency 𝑓𝑠 is sufficient (Nyquist criterion) [16]. 

This research model each signal over one period 𝑇 (e.g., 𝑇 =
1/50 s for 50 Hz systems,   

 𝑇 = 24 h for daily patterns). 

Step 1: Preprocessing of Discrete Sensor Data [17]. 

From Table 1, this study have discrete samples: 

{𝑣𝑘}𝑘=1
𝑁 , {𝑖𝑘}𝑘=1

𝑁 , 𝑡𝑘 = 𝑘Δ𝑡, Δ𝑡 =
𝑇

𝑁
 (4) 

Apply anti-aliasing filtering and windowing (e.g., Hanning 

window) to minimize spectral leakage. 

Step 2:  Use the Discrete Fourier Transform (DFT), which is 

the discrete analog of the Fourier series: 

𝑉𝑛 = ∑  

𝑁−1

𝑘=0

𝑣𝑘 ⋅ 𝑒
−𝑖2𝜋𝑛𝑘/𝑁 , 𝑛 = 0,1, … , 𝑁 − 1 (5) 

Similarly for 𝐼𝑛 (current). 

 Then, the Fourier series approximation of 𝑣(𝑡) is: 

reconstructed sample, and 𝐿 is the total number of 

samples. 

 𝑥̂[𝑘] : Reconstructed signal using the inverse DFT of a 

truncated harmonic spectrum. 

 FFT : Fast Fourier Transform, an efficient algorithm to 

compute the Discrete Fourier Transform (DFT) for 

digital signal processing in loT-enabled energy 

management systems. 

The Total Harmonic Distortion (THD) for voltage can be 

defined as below: 

THD𝑣 =
√∑  ∞

𝑛=2   |𝑉𝑛|
2

|𝑉1|
× 100% (6) 

Similarly for current THD𝑖 . 

High THD indicates inverter faults, grid synchronization issues, 

or partial shading-critical for fault detection (as presented in  

Table (2) [25]. 

4. Power Analysis Using Fourier Components 

Instantaneous Power: 

𝑝(𝑡) = 𝑣(𝑡) ⋅ 𝑖(𝑡) (7) 

Substitute Fourier expansions [1]: 

𝑝(𝑡) = ( ∑  

∞

𝑛=−∞

 𝑉𝑛𝑒
𝑖𝑛𝜔0𝑡)( ∑  

∞

𝑚=−∞

  𝐼𝑚𝑒
𝑖𝑚𝜔0𝑡)

=∑  

𝑛,𝑚

𝑉𝑛𝐼𝑚𝑒
𝑖(𝑛+𝑚)𝜔0𝑡  

(8) 

Thus,  frequency components at (𝑛 + 𝑚)𝜔0. 

Average (Real) Power: 

𝑃 =
1

𝑇
∫  
𝑇

0

𝑝(𝑡)𝑑𝑡 = ∑  

∞

𝑛=−∞

Re(𝑉𝑛𝐼−𝑛
∗ ) (9) 

In practice, this research has computed by using the function 

below: 

𝑃 = ∑  

𝑁ℎ

𝑛=1

|𝑉𝑛||𝐼𝑛|cos⁡(𝜃𝑛 − 𝜙𝑛) (10) 

where: 
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 𝜃𝑛 = arg⁡(𝑉𝑛) 

 𝜙𝑛 = arg⁡(𝐼𝑛) 

 ⁡𝑁ℎ : Number of significant harmonics. 

According to Table 1.  

Assume 𝑇 = 80 min (periodicity from daily pattern), 𝑁 = 8. 

Apply 8-point FFT: 

𝑉𝑛 =∑  

7

𝑘=0

𝑣𝑘 ⋅ 𝑒
−𝑖2𝜋𝑛𝑘/8, 𝑛 = 0,… ,7 (11) 

 𝑉0 = ∑𝑣𝑘 ≈ 100.8 → DC = 100.8/8 = 12.6 V 

 |𝑉1|, |𝑉2|, … → harmonic magnitudes 

Then: 

THD𝑣 =
√|𝑉2|

2 + |𝑉3|
2 +⋯

|𝑉1|
 (12) 

If THD𝑣 > 3%, flag for inspection. 

Optimization and Error Minimization 

To ensure optimal approximation, minimize mean square error 

(MSE) between original and reconstructed signal [16]: 

MSE =
1

𝑁
∑  

𝑁−1

𝑘=0

|𝑣𝑘 − 𝑣̂𝑘|
2 (13) 

Where 𝑣̂𝑘 is the inverse DFT of truncated spectrum. 

Optimal truncation: retain harmonics with 
|𝑉𝑛| > 𝜖 (e.g., = 0.01 × |𝑉1| ). 
This reduces computational load in loT nodes. 

Results 
Figure 4 illustrates the linear relationship when the temperature 

stabilizes between solar irradiance (the power per unit area 

received from the Sun) and energy output of the solar panels. 

Each point on the scatter plot represents a pair of solar 

irradiance in Table 1 and corresponding energy output values. 

The plot shows a positive correlation between solar irradiance 

and energy output, indicating that higher solar irradiance 

generally results in higher energy output from the solar panels. 

Variations around the trend line suggest that other factors, for 

instance, panel Daily Performance Ratio, and temperature; also 

influence the energy output.  

Demonstrates the impact of temperature on the voltage output 

of solar panels. The scatter plot shows an increase in 

temperature tends to slightly increase the voltage output of the 

solar panels. The relationship appears to be less direct 

compared to solar irradiance in Table 1 and energy output, 

indicating that temperature is one of several factors affecting 

voltage, as illustrated in Figure 5. 

The Daily Performance Ratio of the solar panels fluctuates over 

time, likely due to changing environmental conditions, for 

instance, sunlight, temperature as well as the operational status 

of the panels. Regular peaks and troughs may indicate cyclical 

patterns in the data, such as daily or seasonal variations in 

 

 

Figure 4: Solar Irradiance and Energy Output the linear relationship as 

shown when the temperature stabilizes 

                                        

Figure 5: Temperature Impact on Voltage 

Daily Performance Ratio (DPR) as presented in Figure 5. The 

graph illustrates the Daily Performance Ratio of the solar panel 

system over time, expressed as a percentage. The daily 

performance ratio has gradually decreased from a value of 

around 97% to a value of about 93% over a time duration of 10 

units. This is due to the increasing effect of environmental 

factors like temperature rise, dust accumulation, and also their 

partial shading effect over the performance ratio. The trend 

emphasizes the necessity of monitoring and predicting possible 

failure in EMS which is a concrete IoT-based Energy 

Management System to take preemptive action before 

performance degradation occurs to minimize energy loss. Refer 

to the diagram (Figure 6) for more details. below. In addition, 

the system DPR, which refers to the ratio of actual power 

output to theoretically expected output based on prevailing 

irradiance and temperature conditions, showed an initial peak 

of around 97%. The high value suggests that when checks first 

started, the conditions were optimal, that is, the panels were 

clean, the insolation was good, and the trackers were tracking 

effectively. Over the next ten days, the module degradation rate 

fell to 93%. The dust accumulation on the module surface, 

partial shading from nearby vegetation and high ambient 

temperatures over 40°C affected the performance of the 

module. Additionally, these results illustrate the power of 

monitoring and prediction in preventing deterioration of the 

system's long-term performance. 
The reported DPR value of around 97%, as shown in Figure 6 

does not mean the true PV cell conversion DPR, which is 

between 15% and 23% for commercial silicon-based panels 
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under standard test conditions (STC). The DPR of 0.901 is 

calculated by taking plant energy and dividing it by the 

maximum energy that was available from the time it was 

running. 

  
 

Figure 6: Temporal Evolution of Solar Panel System Daily 

Performance Ratio 

This metric is derived from the following formula: 

 DPR = (
 Actual Power Output (W)

 Theoretical Power Output (W)
) × 100 (14) 

Where: Actual Power Output is measured via IoT sensors 

(INA219 current sensor and voltage divider circuit). 

Theoretical Power Output is estimated using the solar 

irradiance data (Apogee SP-212 pyranometer) as well as known 

panel specifications, adjusted for ambient temperature effects 

using the panel's temperature coefficient. 

A DPR of 97% suggests that the output of the PV array is 

certainly close to the ideal one. Moreover, it was during the 

early monitoring periods. Also, it was during the periods with 

negligible effect due to dust accumulation, partial shading, and 

high-temperature effects. This high value reflects. 

 The sun's path is ideally aligned with the fixed-tilt 

array (30 degrees south). 

 At the beginning of the observation period, it had little 

or no soiling or degradation. 

 The charge controller efficiently controls the 

maximum power point tracking (MPPT) 

 Low electrical losses in wiring and inverters. 

The daily performance ratio of operational photovoltaic 

systems depends on variations in electrical and thermal 

parameters. To be specific, the open-circuit voltage has a 

negative temperature coefficient and the voltage output drops 

when the cell temperature is increased beyond the standard test 

condition. At the same time, dust and partial shading reduce the 

irradiance that hits the surface. Thus, the short-circuit current 

also goes down. Over the 10-day monitoring period, a 4% 

decline in power output and overall system performance ratio 

was witnessed due to this combined impact on 10 kW rooftop 

solar system. The downward trend signifies the need for a 

constant check of the IoT-based EMS framework and adaptive 

control to protect the environment and keep the system in good 

shape. A 100% efficiency level is commonly accepted as a 

system’s performance under ideal conditions. However, this 

paper claims that our facility is operating at 97% of its 

theoretical maximum under current conditions. Furthermore, 

97% is a different and meaningful number that can potentially 

be useful for monitoring, verification, and optimization. 

Predictive maintenance was assessed at intervals based on the 

system's data study. The occurrence of maintenance intervals is 

something that might be exploited within the predictive 

maintenance algorithm for the detection of faults [16]. The 

graph shows instances when maintenance required due to 

discovered faults or drops in performance. In order to sustain 

ideal performance and increase the longevity of the solar 

panels, regular maintenance is requir d as shown in Figure 7. 

 

 
                                          

Figure 7: Predictive Maintenance Intervals 

 

Figure 7 shows how we use data to predict the best 

maintenance times for a solar PV system for ten days. The 

upward slope over the interval shows us that the systems learn 

to no longer maintain themselves and as a result we have 

initially high and regular critical faults which slowly become 

less frequent.  Noises and variations happening all the time is 

true proof of the ability to adapt to environmental stress and 

operating faults. This flexible timing plan helps decrease 

downtime and increase energy production. It shows how 

machine learning could be a useful tool for managing energy. 

Cost Benefit Analysis  
 The cost-benefit analysis revealed that the IoT-based EMS is 

economically viable (Kudzi et al., 2025), with a favorable return on 

investment due to reduced operational costs and improved energy 

Daily Performance Ratio. Also, the actual and predicted values for the 

RF model from the provided dataset is presented in Figure 8. 

  

Figure 8: the actual and predicted values for the RF model from the 

provided dataset 

The prediction error metrics for the RF model are as follows: 
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Mean Absolute Error (MAE): 7.86 

Mean Squared Error (MSE): 97.40 

Root Mean Squared Error (RMSE): 9.87 

The errors are spread and whether they are centered around 

zero. There are 11 outliers in the prediction errors for the RF 

model. The outlier bounds are (Lower bound: -26.71) and 

(Upper bound: 26.36), as presented in Figure 9.  
 

 
Figure 9: The plot above shows the distribution of prediction errors 

for the RF model 

 

The scatter plot illustrates a strong positive correlation between 

the actual and predicted values of solar panel performance, with 

data points closely clustered around the diagonal line. The 

Random Forest (RF) model can forecast energy output with 

high accuracy as evidenced by a correlation coefficient of 0.95. 

The slight change of the ideal prediction line shows how 

efficient our model is at figuring out the dataset. Figure 10 

supports this claim below. 

  

Figure 10: Correlation between the actual and predicted values is 

0.95, indicating a strong positive relationship 

 

The R² scores for the five cross-validation folds show 

consistency in predictions. Fold 3 has the maximum R² value of 

around 0.90, which is strong, while the values for the other 

folds remain above 0.85 and are high. The model demonstrates 

good robustness, with minor variations across various data 

batches indicating its reliability of solar panel Daily 

Performance Ratio prediction, as seen in Figure 11. 

 

 
Figure 11: R² Scores based on stability across folds, indicating 

consistent predictive accuracy 

The bar chart shows the stability of a model's prediction 

accuracy by means of prediction in five cross-validation folds.  

Fold 5 has the highest MAE (approximately equal to 8.7), but 

all folds vary over a narrow range.  The small difference 

indicates a robustness in the model ability to predict for 

different data subset as shown in the Figure 12. 

 

 
Figure 12: MAE Scores the error distribution across folds, 

representing mean absolute errors 

Root Mean Squared Error (RMSE) assessed across five cross-

validation folds indicating model prediction accuracy. Fold 3 

has the lowest RMSE, at around 9.4, with all folds having 

values in a tight range. The model appears robust as it can 

generalize to other data sets according to Figure 13.  

 

 
Figure 13: RMSE Scores the root mean squared error across folds, 

indicating the spread of error magnitudes 

The residual plot shows the difference between actual values 

and predicted values for all data points of the dataset along a 



Ben Della, et al.  

Wadi Alshatti University Journal of Pure and  Applied Sciences, vol. 4, no. 1 January-June 2026                                                                                  Page 50 

horizontal line with its order. The errors are randomly scattered 

across the zero line, showing the absence of systematic bias or 

trends in the predictions.  The random variation reinforces the 

model's robustness and reliability in describing the solar panel 

performance data, as demonstrated in the Figure 14. 

 
Figure 14: The plot of the residuals over time, with zero as the 

reference line to show prediction errors fluctuate and whether there are 

any patterns or trends in the residuals 

The residual plot below displays the spread of errors against the 

predicted values. The random scattering of points about the 

zero line is an indication of a good model. The model’s 

predictions do not exhibit systematic bias or heteroscedasticity 

as indicated by the pattern. A constant spread of residuals 

confirms that the model is a good fit for the data that indicates 

the performance of solar panels. This is shown in Figure 15. 

 

 
Figure 15:  The plot of the residuals against the predicted values 

Helps to identify any possible patterns like a case of 

heteroscedasticity (unequal spread) or some form of bias.  In a 

perfect scenario, the residuals are uniformly scattered around 

zero. 

Figure 18 shows how the energy output of a PV system 

changes over 10 days. The monitored values (in green dot) are 

on a downward trend. The cubic trend line (red dashed) shows 

this decline. This confirms that there is a gradual loss of 

performance due to the effects of dust and high

 
Figure 16: Comparison of average DPR across six climate conditions 

The bar graph Figure 16 depicts the Average Daily 

Performance Ratio (DPR) of six climatic zones. This data 

reveals that environmental conditions greatly influence 

the DPR of a solar PV module. While the Sunny Desert 

displays the highest DPR of 87.7%, most likely due to the 

high and stable irradiance, the Cloudy Temperate has an 

average of 29.0%, which is in significant losses 

attributable to diffuse and attenuated radiation. The data 

shows that photovoltaic systems perform well in semi-arid 

and alpine regions while they suffer performance penalty 

in tropical and temperate climates. The performance 

degradation is mainly due to humidity, soiling and 

variation in clouds. This finding calls for the designers 

and managers of solar energy systems worldwide 

application of climate-specific system design and adaptive 

management. 
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Figure 17: Average Voltage THD Across Six Climate Conditions 

Figure 17 quantifies the Average Voltage Total Harmonic 

Distortion (THD) across six distinct climate types, revealing 

a pronounced correlation between environmental stress and 

power quality degradation [18,19]. The highest THD of 

3.94% is observed in the Sunny Desert climate, attributed to 

extreme thermal cycling and dust-induced inverter stress, 

while the lowest values of 1.00% are recorded in Cloudy 

Temperate and  Cold environments, which offer more stable 

operating conditions. The data demonstrates that harsh, high-

temperature climates significantly elevate harmonic 

distortion, thereby increasing the risk of grid instability and 

component failure. This finding underscores the critical role 

of DFT-based THD monitoring within the IoT-based EMS 

framework, as it provides an early-warning mechanism for 

incipient faults that are most prevalent under severe 

environmental conditions. 

 

 

Figure 18: Graph displaying energy output over a period of time
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temperature. There is a close correlation between the 

measured data and the trend line, meaning the system can 

accurately capture and model performance degradation. It is 

important to monitor an industrial process in order to avoid a 

loss of efficiency and to maintain operational yield. 

 

 
Figure 19: model prediction accuracy (r² & rmse) comparison 

The creators of the system are required to provide the 

relevant data to which the model can be fitted. Supply of 

versions makes the model independent of every possible 

change, and the model can be fit according to its 

requirements.  The R² score is shown in blue, and it tells us 

how much variance in the target variable our model was able 

to account for. Meanwhile, the orange bars represent Root 

Mean Squared Error (RMSE) or the average error in our 

predictions. The findings indicate that the neural networks 

model produces the greatest R² score (roughly 0.89) and the 

lowest RMSE (roughly 10.2), which shows greater 

forecasting power and robustness. On the other hand, the 

linear regression model has the worst performance, with the 

lowest R² score of around 0.84 and the highest RMSE of 

around 11.5, suggesting that it is inadequate for this non-

linear data. Our analysis shows that model we selected is 

indeed a suitable choice. The neural network is a great choice 

because it learns from multiple inputs to predict energy 

output accurately. This can enable predictive maintenance 

and optimization of operations. 

 Relationship Between Technical Characteristics of the 

Used Solar Panel 

The results of the investigation and the efficiency of the IoT-

based Energy Management System largely depend on the 

technical characteristics of the polycrystalline silicon solar 

panel deployed in Baniwalid, Libya. The panel was not just 

an energy producer; it was the most important physical asset. 

Its actual performance in the field under stress provided the 

necessary data to validate the system prediction and optimize 

it after production. In addition, the polycrystalline silicon 

module is quite significant. The performance degradation is 

due to its inherent material characteristics, notably well-

recorded negative temperature coefficient for voltage (Voc). 

As the ambient temperature continuously exceeded 40 °C 

(which might lead the cell temperature to exceed 65 °C), the 

module voltage and MPP decreased as expected, which 

caused a 4% decline in performance ratio (PR) [20-22]. 

The panels were fixed-tilt mounted at 30° to the south, to 

maximize yearly yield for the site latitude. This stable, non-

tracking configuration provided a consistent basis for 

performance evaluation. The observed variations in PR, 

which ranged from 97% to 93%, were clarified. 

Consequently, the reasons were identified as environmental. 

As for the environmental factors, they were temperature, 

soiling and system health. As for the panel orientation, it did 

not change. Therefore, the variation was not due to that. 

Thus, the variables temperature, soiling and system health – 

were those the EMS was developed to mitigate [9]. The 

performance of the panel next to the ground is significantly 

impacted by the dry environment where it is located. (18 

words) Due to the technical characteristic of the glass 

surface, atmospheric dust pollutes the solar cells and reduces 

irradiance and short-circuit current (Isc). The 4% drop in PR 

over the next ten days is due to this soiling and thermal 

effects. Due to the quick and quantifiable deterioration, such 

a system is necessary. It will be useful to monitor these losses 

with the IoT-based system in real-time. Further, the 

monitoring system will trigger maintenance or optimization 

for losses when detected. The voltage and current of the panel 

were monitored continuously by calibrated IO-sensors 

(INA219, voltage divider), while environmental parameters 

were recorded by a pyranometer (Apogee SP-212) and a 

temperature sensor (BME280) in a closed loop [17,23]. Data 

stream for high resolution at 10 minute interval of panel’s 

physical state that is connected with EMS. We use the data to 

calculate a real-time PR. We perform DFT-based THD 

analysis for the fault detection of the equipment. We also use 

this data to train the machine learning model to predict any 

failures that may happen within the patch. Similarly, we are 

also getting predictions on yield. In short, the panel’s 

technical characteristics create the information that controls 

the entire intelligent framework.  

Discussion  
The integration of IoT gadgets and advanced computational 

models, namely Artificial Neural Network (ANN) are 

revolutionary in the areas of optimization and intelligent 

management of photovoltaic (PV) systems [23,24]. This 

study presents a comprehensive IoT-based Energy 

Management System (EMS) framework designed for real-life 

solar panels working in a semi-arid environment to enhance 

performance and reliability and improve longevity. The 

proposed system improves the energy Daily Performance 

Ratio, facilitates fault detection, and reduces operational costs 

by integrating real-time sensor data acquisition, edge-to-

cloud analytics, and predictive maintenance using machine 

learning [25]. An important finding of this research is the 

strong positive correlation of the solar irradiance in Table 1 

as well as the energy output, as shown in Figure 4. This 

would not be surprising based on the fundamental theory of 

photovoltaic operation. However, the high-frequency, time-

synchronized data collected through the IoT network enables 

precise quantification of ‘the confusion’ that researchers 

generally talk about. The deviations produced as a result of 

variations in temperature, partial shading, and soiling 

conditions are measured through a ten-minute sampling 

interval and processed through a signal processing tool. 

Using Discrete Fourier Transform (DFT) on voltage and 

current waveforms can obtain harmonic components to 

compute Total Harmonic Distortion (THD). THD is an 

important power quality indicator of power or inverter health. 

The spectral analysis showed high THD before the system 

Daily Performance Ratio started to drop [26]. This suggests 

that Fourier methods can provide an early warning of 

possible problems, such as inverter degradation or grid fault 

[1,16]. This ability improves the system's ability to accurately 

diagnose issues using more than just threshold alarms. The 

system can make preventative moves before a catastrophic 

failure. The performance of the PV differs at different 

temperatures. Figure 4 draws attention to the ability of the PV 

to work under various temperatures. Classical PV models 
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estimate that open-circuit voltage drops with increasing 

temperature [27,28]. However, the slight increase in 

operational voltage under varying irradiance conditions may 

have been due to load-dependent and the working of 

Maximum Power Point Tracking (MPPT) algorithms [29,30]. 

This difference shows that static models based on physics are 

not enough to capture what real systems do. Thus, there is a 

need for a more adaptive data-based controlling action 

[31,32]. The ANN model, trained on multivariate inputs such 

as solar irradiance given in Table 1, ambient and panel 

temperature, voltage and current in Table 1  The traditional 

MPPT techniques fail to capture nonlinear interdependencies 

among the variables influencing the optimal operating point 

of PV [33,34]. This capacity is crucial in arid and semi-arid 

regions where thermal stress and dust deposition will 

adversely impact long-term performance. The results of this 

study are very pertinent when set in the context of recent field 

studies from similar climatic zones. Ihaddadene, et al. [35] 

has reported an average annual degradation rate of around 2% 

for polycrystalline silicon (p-Si) modules due to high 

temperature, dust build-up, and long UV exposure in 

Morocco’s semi-arid area. A similar study by Nassar and 

Salem [36] noted that solar PV cells recorded more than 

125.4°C under irradiance levels of ~896 W/m² in southern 

Libya. Thus, a 69% drop in power output occurs in STC. The 

outcome of these results is the environmental gravitas of the 

Baniwalid test site and the need for continuous real-time 

monitoring systems with the ability to detect performance 

degradation in real-time. The EMS based IoT implemented in 

this study directly tackles these issues by allowing continuous 

monitoring of thermal and electrical parameters thereby 

reducing D.P.R. losses through timely corrective actions. 

In addition, Machine learning powered by the predictive 

maintenance framework is a great improvement over the 

traditional time-based or reactive maintenance mechanisms. 

In Figure 6, it can be seen that the maintenance interventions 

occur in real-time due to the anomalies detected within the 

performance metrics. This reduces the likelihood of 

unscheduled downtimes and increases the lifespan of the 

system. The Random Forest (RF) model was used as a 

benchmark showed a high correlation coefficient (r=0.95) 

between the actual and predicted Daily Performance Ratio 

values with a Root Mean Squared Error (RMSE) of 9.87 and 

Mean Absolute Error (MAE) of 7.86 [37]. The use of ANN 

models which can model complex and non-linear mappings 

for fault classification also further improved accuracy in this 

fault characterization. This helps in distinguishing between 

transient environmental effects and persistent hardware faults 

like micro-cracks, bypass diode failures or soiling-induced 

losses [38,39]. 

The predictive model is statistically robust as per residual 

analysis (Figures 14 and 15), and the errors in the model are 

random centred at zero without heteroscedasticity. Figures 10 

to 12 showcase the cross-validation metrics. All metrics 

across the different folds are quite similar which shows the 

stability of the model as well as its generalizability. These 

two attributes of the models are crucial for deployment in 

real-world settings. These findings confirm that the ANN-

based approach can be relied upon in decision-making 

problems like these where predictive accuracy directly 

impacts operational Daily Performance Ratio and economic 

benefit. From a system integration perspective, the use of 

low-power, low-cost hardware, for instance, the ESP32 

microcontroller given in Table 1 with high precision sensors 

(BME280, INA219, Apogee SP-212) ensure grid-connected 

and off-grid scalability. The integrity and privacy of the data 

transferred will not be compromised when secure 

communication protocols (MQTT over TLS/SSL) are used 

[40]. By preprocessing the edge using a Raspberry Pi node, 

latency and bandwidth use are reduced. Cloud platforms 

(ThingSpeak/AWS IoT Core) allow for centralized data 

storage as well as visualization and large-scale analytics. This 

work can also be used as the basis for a smart grid as well as 

a demand-side management system. The cost-benefit analysis 

shows a return on investment within 2.3 years. This is 

possible through a 12.7% average increase in energy yield 

and a 34% reduction in unscheduled maintenance costs. 

These figures demonstrate the economics of adopting IoT-

based EMS systems, especially for commercial and utility-

scale solar facilities, as even slight gains in Daily 

Performance Ratio led to significant revenue improvements 

[41-44]. 

The proposed system also solves some major challenges 

identified in the literature such as data fragmentation, 

interoperability and security. The framework will enable 

integration among heterogeneous devices when standardized 

communication and role-based access control are adhered to. 

Such conditions are necessary for large scale deployment 

[45.46]. Future research will experiment with hybrid deep 

learning architectures, such as LSTMs, for time series 

forecasting of energy output and fault progression [47]. 

Researchers suggest that the use of federated learning can 

help train models collaboratively on distributed solar farms 

without compromising the privacy of individual farms. This 

could pave the way for decentralized privacy-preserving 

energy management. 

The combination of three essential technologies, namely 

cloud computing, internet of things (IoT) sensors and 

artificial neural networks, will facilitate intelligent 

management of solar energy in a useful study. The 

framework developed within this project, improves energy 

Daily Performance Ratio and enhances system dependability 

while being scalable and replicable for the enhancement of 

solar infrastructure in urban and remote areas. The 

contributions support the concept of Industry 4.0 and 

sustainable development, offering practical insights to 

researchers, engineers and policymakers that will help hasten 

the world’s transition to renewable energy.  
Conclusion 

The study shows that the performance of solar panels can be 

enhanced using IoT-based EMS. Incorporating real-time data 

acquisition, processing, and predictive maintenance 

capabilities enhance Daily Performance Ratio as well as 

provide substantial cost savings. In the future, we are going 

to be working on focusing on scaling the system.  Initial 

implementation costs may present a barrier to uptake, 

particularly for off-grid systems; however, the lifetime 

economic and operational benefits warrant the expenditure. 

 Future studies must focus on developing low-cost, secure, 

interoperable IoT architectures by integrating machine 

learning models for autonomous fault detection, performance 

forecasting and adaptive control key enablers for the next-

generation smart solar energy systems.  The initial 

implementation cost might prove a barrier, especially for off-

grid systems. However, the economic and operational 

benefits are attractive over the long term.  
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