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ARTICLE HISTORY ABSTRACT
Received 01 November 2025 This research introduces an advanced energy management approach for PV setups situated in
Revised 21 December 2025 demanding semi-arid environments, specifically focusing on Baniwalid, Libya. Conventional
Accepted 31 December 2025 energy management systems often depend on fixed parameters or basic models, which only
Online 03 January 2026 address a limited scope of environmental variables. Such systems lack the adaptability to
effectively respond to fluctuating conditions like intense heat, dust buildup, and intermittent
KEYWORDS shading, all of which can undermine solar panel performance. To overcome these limitations, the
Energy management system; study incorporates artificial neural networks within an Internet of Things-based framework. This
Fault Detection; system utilizes a network of affordable sensors to collect real-time operational data from PV
Fast Fourier transform; arrays. Via applying Discrete Fourier Transform techy, the system extracts key features such as
Real-Time monitoring; Total Harmonic Distortion from electrical signals, which serve as early indicators of potential
Machine learning. faults. Machine learning algorithms then leverage this data to forecast energy output as well as

monitor the daily performance ratio, enabling the detection of gradual performance declines.
During a ten-day observation period, the framework recorded a decrease in DPR from 97% to
93%, primarily attributed to temperature swings as well as dust accumulation on solar modules.
The ANN-based model successfully correlated predicted outcomes with actual measurements,
highlighting its potential for accurate system health assessment. The hybrid methodology
combining physics-based signal analysis with data-driven intelligence facilitates proactive
maintenance strategies that minimize unexpected interruptions, optimize energy yields, and can be
efficiently deployed at the network edge. By transforming PV systems into adaptive, self-
monitoring assets, this work enhances operational resilience under extreme conditions and offers a
scalable solution that can be applied to smart energy management globally.
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Introduction

Driven by concerns about climate change and global warming,
the global renewable capacity by the end of 2025, is expected
to see massive growth, with projections suggesting solar PV
alone will surpass 3,000 GW, contributing significantly to a
total capacity projected to approach or exceed 6,000 GW, as
annual additions are forecast to hit a record ~793 GW. This
growth in the RE market reflects a global shift towards
renewable and sustainable energy technologies [1].

The integration of Internet of Things (IoT) technology into
Energy Management Systems (EMS) has significantly
improved the daily performance ratio of Solar Panels [2].
Furthermore, EMSs based on the Internet of Things offer real-
time monitoring and control requirements that enhance
dependability and energy economy. This research also looks at
the use of loT technology for controlling and enhancing solar
panel performance [3], addressing significant issues and
providing a clear implementation process. The energy
management sector has seen a lot of impact thanks to the
evolvement of Internet of Things (1oT) technology [4]. How
better can utilize energy than through smart technologies the
introduction of IoT in energy systems has facilitated the
development of innovative ways to optimize energy usage
thereby enhancing the Daily Performance Ratio of renewable
energy sources. Solar energy is one of the most important
renewable energy sources. It is seen that solar energy has the
potential to replace conventional energy sources in a
sustainable and eco-friendly manner. The focus of this study
was on loT-based energy management technology to improve
the solar panel output. To help with analyzing, decision-
making, and data collection with real-time. The use of 10T will
help monitor and optimize energy consumption, thus improving
the overall Daily Performance Ratio of the solar panels. These
systems may have collected data on various parameters such as
solar irradiance, temperature, and orientation of the panel that
subsequently adjust the operational parameters dynamically for
better energy benefits [5,6]. 10T energy management systems
guarantee no problems with the solar panels. It monitors
everyday activities while also foreseeing faults to avoid larger
troubles like breakage for max efficiency. Using machine
learning in these systems can improve their abilities to predict
things better and intervene faster [7]. Recent studies have
determined the Daily Performance Ratio of 10T in improving
the performance of solar energy systems [8]. For example, [9]
study elucidated the significance of loT for real-time
monitoring and control of solar panels that, as a result, augment
Daily Performance Ratio of Working Energy significantly.
Likewise, studies by [2-5] said that the loT-enabled energy
management systems successfully reduce operational costs and
improve energy outcome. Using 10T in solar energy solutions
doesn't only support global sustainability of energy solutions
such as solar, but it also helps in addressing the challenges
faced in energy management in the remote, off-the-grid
locations. Thanks to improvements in the loT Technology, it is
possible to create more resilient and adaptive energy
infrastructures capable of operating under some environmental
conditions and energy demands [9]. The aim of this research is
to 10T based energy management techniques for optimum solar
power generation. The analysis of literature to identify best
practices and provide innovative solutions to maximize the
daily performance ratio and reliability of solar energy systems

will be shown in case study.

Materials and Methods

Experimental location and deployment environment

The experimental study was done at a personal solar
photovoltaic (PV) installation site which managed by
researcher in Baniwalid, Libya. The site which is dedicated
research and data collection laboratory, is situated in (a semi-
arid region) with coordinates about at 31.8500° N as well as
14.0333° E. Furthermore, this geographical location offers high
solar insolation levels all over the year, with an average daily
global horizontal irradiance (GHI) exceeding 5.5 kWh/m?,
making it highly suitable for solar energy research. The PV
system under investigation is a small-scale, grid-independent
solar array made up of polycrystalline silicon modules attached
on a fixed-tilt structure facing south at a 30° angle, which is
almost perfect for optimizing the region's annual solar energy
capture. Therefore, the installation of standard battery storage,
charge controllers, and power conditioning devices are
included, that allowing for thorough electrical and
environmental parameter monitoring. Moreover, a personal
solar farm is a real-world testbed for the implementation and
validation of an Internet of Things (loT)-based (EMS)
combined with sophisticated data analytics and predictive
modeling methods is this personal solar farm. On the other
hand, this site is privately managed and run by researchers,
enabling flexible setup, quick prototyping, and ongoing access
for long-term data validation, system maintenance, as well as
sensor calibration as presented in Figure 2. A step-by-step
flowchart diagram of the system.

The environmental characteristics include high summertime
daytime temperatures which is normally above 40°C and
mostly clear skies with little seasonal in Table 1. This condition
provided a reliable setting for evaluating the effects of heat and
radiation on PV performance, with regard to fault detection and
Daily Performance Ratio degradation under actual operational
loads. The solar panels and sensing units and minimal signal
interference, 10T sensors and communication modules were
deployed closely on-site. Thus, natural soiling, dust buildup,
and temperature changes, all of which are common in desert
and dry areas and have a big impact on solar panel output,
which the data was gathered. An important factor in the
adoption of renewable energy in remote and underserved areas
is the performance of loT-integrated (EMS) in off-grid,
decentralized, and resource-constrained environments.
Instrumentation and Measurement Devices

An loT-based Energy Management System (EMS) was
developed by a privately owned PV installation in Bani Walid,
Libya. The experimental was used instrumentation which are
high-resolution, real-time monitoring of environmental and
electrical parameters that critical to solar panel performance.
Therefore, all the used devices were selected for their
reliability, compatibility and cost-effectiveness, with embedded
IoT architectures, ensuring that seamless integration into a
scalable monitoring ecosystem. The inter of the designed
system comprises a network of precision sensors, an embedded
microcontroller unit (MCU) in Table 1, wireless
communication modules, and analytics tools, entering edge-to-
cloud data acquisition and processing chain as presented in
Table 1. Instrumentation and Measurement Devices. Below is a
detailed description of each component used in the
instrumentation setup.
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System Architecture

Each sensor is physically mounted in close proximity to the
solar panel array to ensure representative measurements. The
BME280 sensor is placed under partial shade to avoid direct
heating while still capturing ambient in Table 1. Air
temperature, whereas the pyranometer is co-planar with the PV
surface to measure plane-of-array (POA) irradiance accurately.
The INA219 sensor is connected with the solar panel output to
monitor current flow. Whereas to measure terminal voltage
which is divider circuit is connected in parallel as presented in
Table 1. On the cloud side, data is ingested into ThingSpeak,
where it is stored in a time-series database csv file format and
made accessible through a customizable dashboard. Derived
performance metrics, for instance, Daily Performance Ratio
(%), energy output (kWh), fault detection status, and
maintenance alerts are computed using MATLAB-compatible
scripts hosted on the platform, as reflected in Table 3. In
addition, Fourier-based signal analysis is applied to detect
distortions in the voltage as well as current waveforms. The
Discrete Fourier Transform (DFT) is utilized to compute
spectral components, enabling the calculation of Total
Harmonic Distortion (THD), which serves as an early indicator
of grid synchronization issues.

Methodology

System Design

Hardware: Solar panels, sensors (irradiance, temperature,
voltage, current), microcontrollers as presented in Figure 1 and
Table 1, communication modules (Integrated Wi-Fi (ESP32)),
and storage devices.

Software: Firmware development, data collection software, and
cloud-based data analytics platforms.

Data Acquisition: Sensors collect data on solar irradiance in
Table 1, temperature, and electrical parameters (voltage and
current) of the solar panels as presented in Figure 1. This data is
transmitted via 1oT communication protocols to a central server
for processing.

Data processing: is all about the steps that a data is taken
through in order to cleanse it of noises so as to ensure that the
right data which can be useful to the study is made available for
analysis.

Analysis: The performance measurement is done using several
algorithms such as performance ratio, energy output, fault etc.
The integration phase: deals with configuring the loT
gateways which helps in data aggregation and their
transmission to a cloud platform. Cloud storage and processing
of data and analytics provide scalability and efficient operation
to perform data management.

User Interface: Designed to monitor and control online and
inform users about solar panel performance and issues so that
the users can make decisions, as shown in Figure 1 and Table 1.

Table 1: A detailed description of instrumentation and measurement devices

Parameter Device/Sensor  Model/Type Measurement Accuracy  Sampling Interface & Functional
Measured Range Interval Integration Role
Solar Pyranometer Apogee SP-212 (or 0-2000 W/m?2 +5% of 10 minutes Analog output  solar radiation
Irradiance equivalent analog reading 0-25V)— on panel
Sensor) ESP32 ADC surface
Ambient & Digital BME280 (I2C -40°C to +85°C +0.5°C 10 minutes 12C bus Monitors
Panel Temperature interface) connected to environmental
Temperature and Humidity ESP32 conditions
Sensor
DC Voltage Resistive Custom circuit with 0-30V +0.8% 10 minutes Analog input Measures
Voltage 10:1 scaling to ESP32 real-time
Divider + output voltage
Precision
Amplifier
DC Current High-Side INA219 (bi- 0-3.2A +1% 10 minutes 12C interface calculates
Current directional power and
Sensor current/power efficiency
monitor)
Microcontroller  Low-Power ESP32-WROOM-32 3.3 V operating — — Wi-Fi 802.11
Unit (MCU) Embedded voltage b/g/n, preprocessing,
Processor Bluetooth 4.2 and
transmission
Communication  Wireless Integrated Wi-Fi Upto 100 m — 10-minute MQTT over Securely
Module Transceiver (ESP32) (indoor), 300 m intervals TLS/SSL transmits
(open field) sensor data to
cloud server
Data Optional Edge  Raspberry Pi — — — Ethernet/Wi-Fi  preprocessing
Aggregation &  Node (standby mode) if needed
Edge
Processing
Cloud Platform  Data Storage ThingSpeak / AWS Real-time — 10-minute HTTPS/MQTT  Stores,
& Analytics 10T Core dashboard and sync protocol visualizes,
API access and analyzes
Power Charge PWM-based MPPT 12VDC—-230 — Continuous ~ Connected to monitored for
Conversion & Controller & Controller + 5kVA V AC, 50 Hz load side stability and
Conditioning Inverter Inverter harmonic
distortion
Technical features of the solar panel used
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Because of its reliable performance, it can be used to assess
environmental impacts and the performance of loT-based
monitoring, panel was placed at 30° tilt fixed south which is a
routine procedure so that energy yield is maximized for the
latitude of the site. This tilt and azimuth were chosen to
maximize annual energy yield for the geographical latitude of
the test site [10,11]. The fixed-tilt design is stable and requires
little to no maintenance and is not complicated by any dynamic
tracking mechanisms. By wusing loT sensors, we can
continuously monitor the performance of the system, as well as
the environmental parameters. initial measurements indicated a
high-performance ratio (pr) of almost 97%. However, under
high ambient temperature conditions and significant dust, the pr
decreased by 4% over a period of ten days primarily due to
temperature and soiling impacts, higher temperatures reduced
voltage and maximum power output [12,13], dust accumulation
reduced irradiance and current [14]. Both observations are
consistent with findings in semi-arid regions [15]. Thus, it is
important to continuously monitor the PV solar fields using loT
and the other technical specifications that affect pv operation in
real conditions. The loT-ems architecture was fully integrated
into the PV module. the electrical output (voltage and current)
and surrounding environmental conditions (irradiance using an
apogee sp-212 pyranometer and ambient temperature via a
bme280 sensor) were sampled every 10 minutes this high-res
data stream enabled the computation of the instantaneous
performance parameters, such as system pr, and facilitated the
application of robust signal processing (eg dft-based thd
analysis) for the detection of early signs of failure, inverter
failure or partial shadowing. According to experts, this data was
the main input of machine learning models, predicting for
example energy yield and when maintenance was necessary.
Therefore, linking the technical features of the modules to the
intelligent control of the system.

Performance Analysis

Performance  analysis involves  benchmarking  Daily
Performance Ratio metrics, conducting predictive maintenance
using machine learning models, and evaluating the system’s
overall effectiveness. 10T Based Energy Management systems
as well as refer to it while describing the system design, data
acquisition, processing, integration, and user interface. The
description of the methodology is structured around this
flowchart in Figure 1.

The system evaluation

Experimental Location and Deployment Environment as
presented in Figure 2 a step-by-step flowchart diagram of the
system and the setup of the personal solar farm used as a
testbed. Field testing in a real-world solar farm and the data
have been collected as presented in Figure 3 and Table 2.

This research has collected user feedback to refine system
functionality. This research conducting a cost-benefit analysis
to assess the economic viability of the loT-based EMS. The
Mathematical implementation by using Fourier Series
Expansion.

Let f(t) be a piecewise continuous, periodic function with
period T. Then f(t) can be represented as a Fourier series [16]:

f(t) =ag+ Z [a,cos(nwyt) + b,sin(nwyt)] 1)

Where:

2
o wy,= ?” : fundamental angular frequency,

e qy= %fOT f(t)dt : DC component,
e a,= ;fOT f(t)cos(nwyt)dt,

e b, = ;fOT f()sin(nwyt)dt.

‘ System setup (hardware and software) ‘

"?

‘ Data Acquisition (Sensor and dataset) ‘

v

‘ Data Transmission and Pre-processing stage ‘

-

‘ Data Analysis and performance Matrices stage ‘

-

Integration and Real-Time Monitoring stage

v

Predictive Maintenance (ML Models) stage

-

‘ Field Testing and evaluation stage ‘

Figure 1: Flow chart for IoT Based Energy Management systems
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Figure 2: A step-by-step flowchart diagram of the system

Wadi Alshatti University Journal of Pure and Applied Sciences, vol. 4, no. 1 January-June 2026

Page 44



Ben Della, et al.

-

I Voltage THD (%)
3 Current THD (%) 6.2

w

S S g

ThingSpeak

4.4

Total Harmonic Distortion (THD %)
° - ~ w =
5
=
-
w
&
N
=
) =
o
-y
~
=
_-“j
w
&

i o
o n o R
. o o o

Climate Type

BME280 Outprnt cables INA219 Voltage divider

Figure 4: Average Voltage and Current THD by Climate Type and
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Figure 3: The Bani Walid indoor experiment design

Table 2: Performance Matrix

Record ID  Efficiency (%)  Energy Output (kWh)  Fault Detection ~ Maintenance Required Timestamp
1 97.0 1.30 No No 2023-01-01 12:00:00
2 96.8 1.29 No No 2023-01-01 12:10:00
3 96.5 1.27 No No 2023-01-01 12:20:00
4 96.3 1.26 No No 2023-01-01 12:30:00
5 96.0 1.25 No No 2023-01-01 12:40:00
6 95.7 1.24 No No 2023-01-01 12:50:00
7 95.5 1.23 No No 2023-01-01 13:00:00
8 95.2 1.22 No No 2023-01-01 13:10:00
9 94.8 1.20 No No 2023-01-01 13:20:00
10 94.5 1.19 No No 2023-01-01 13:30:00
11 94.0 1.17 Yes Yes 2023-01-02 10:00:00
12 93.8 1.16 No No 2023-01-02 12:00:00
13 93.5 1.15 No No 2023-01-02 12:10:00
14 93.2 1.14 No No 2023-01-02 12:20:00
15 93.0 1.13 No No 2023-01-02 12:30:00

Table 3: Performance metrics across 6 climate condition

Solar Irradiance Temperature  Voltage Current

Record ID Climate Type (W/m2) (°C) (V) (A) Timestamp
1 Dry_SemiArid 800 25.0 12.50 5.10 2023-01-01 12:00:00
2 Dry_SemiArid 820 26.0 12.48 5.15 2023-01-01 12:10:00
3 Sunny_Desert 880 42.0 11.90 5.50 2023-01-01 12:20:00
4 Sunny_Desert 900 435 11.80 5.60 2023-01-01 12:30:00
5 Cloudy_Temperate 300 18.0 12.70 2.50 2023-01-01 12:40:00
6 Cloudy_Temperate 280 175 12.72 2.40 2023-01-01 12:50:00
7 Rainy_Tropical 450 30.0 12.30 3.80 2023-01-01 13:00:00
8 Rainy_Tropical 400 295 12.35 3.60 2023-01-01 13:10:00
9 Temperate_Moderate 500 220 12.55 4.20 2023-01-01 13:20:00
10 Temperate_Moderate 520 225 12.52 4.30 2023-01-01 13:30:00
11 Cold 780 5.0 13.20 5.80 2023-01-01 13:40:00
12 Cold 760 45 13.25 5.70 2023-01-01 13:50:00
13 Dry_SemiArid 790 38.0 12.00 5.00 2023-01-02 12:00:00
14 Sunny_Desert 850 45.0 11.70 5.70 2023-01-02 12:10:00
15 Cold 740 3.0 13.30 5.60 2023-01-02 12:20:00
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Alternatively, in complex exponential form:

e f(t) : A piecewise continuous, periodic function
representing a time-domain signal, for instance,
voltage or current; from the solar panel system.

e T : The fundamental period of the periodic function
f(t), in seconds, over which the signal repeats.

e w,= 2?” : The fundamental angular frequency (rad/s)

of the periodic signal.

) 1 (T .
©= ) aemta=g| foemd @
0

n=—oco

This form is optimal for digital implementation and spectral
analysis.
Application to Solar Panel Output Signals

(t) ~ Z [/;1 . eiZn:nt/T (3)

=0

=2 -

N-1
n

Step 3: Reconstruct and Analyze Signal
Decompose v(t) into [16]:
e DC component: V,/N

Components

e Fundamental (n = 1);%[/161'2111:/7"

e Harmonics (n > 2): higher-order terms

e THD, : Total Harmonic Distortion for voltage, defined

JEne VE .
as THD, = ” X 100%, where V, is the RMS

1
value of the n-th harmonic voltage and V; is the RMS
value of the fundamental component.

e THD, : Total Harmonic Distortion for current, defined
analogously to THD,,.

e  P(t) : Instantaneous power, given by P(t) = v(t) -
i(t), where v(t) and i(t) are the instantaneous voltage
and current signals.

e P,, : Average (real) power, calculated as P,, =

% ) OTP(t)dt, representing the useful power delivered

by the system.

e 1, L, : Magnitudes of the n-th harmonic components
of voltage also current, respectively, obtained via
Discrete Fourier Transform (DFT).

e N : Number of significant harmonics retained in the
analysis after optimal truncation for computational
Daily Performance Ratio.

MSE : Mean Square Error between the original signal and its
reconstructed version, defined as MSE = %Zizﬂx[k] -
%[k]|?, where x[k] is the original signal sample, £[k] is the

Let v(t) and i(t) be the periodic voltage and current signals
sampled from the solar panel via loT sensors (Table 1). Assume
sampling frequency f; is sufficient (Nyquist criterion) [16].
This research model each signal over one period T (e.g., T =
1/50 s for 50 Hz systems,

T = 24 h for daily patterns).
Step 1: Preprocessing of Discrete Sensor Data [17].
From Table 1, this study have discrete samples:

T
idh=y, (i1, t = kAL, At = N (4)

Apply anti-aliasing filtering and windowing (e.g., Hanning
window) to minimize spectral leakage.

Step 2: Use the Discrete Fourier Transform (DFT), which is
the discrete analog of the Fourier series:

=

-1

v, = v, - e 2mk/N 0 =0,1,..,N—1 (5)

=
Il

0

Similarly for I, (current).

e Then, the Fourier series approximation of v(t) is:
reconstructed sample, and L is the total number of
samples.

e X[k] : Reconstructed signal using the inverse DFT of a
truncated harmonic spectrum.

e FFT: Fast Fourier Transform, an efficient algorithm to
compute the Discrete Fourier Transform (DFT) for
digital signal processing in loT-enabled energy
management systems.

The Total Harmonic Distortion (THD) for voltage can be

defined as below:
Ve Val?

x 100% (6)
1A ’

THD, =

Similarly for current THD;.

High THD indicates inverter faults, grid synchronization issues,
or partial shading-critical for fault detection (as presented in
Table (2) [25].

4. Power Analysis Using Fourier Components

Instantaneous Power:

p®) =v(t) - i(t) ()

Substitute Fourier expansions [1]:

p(t) = ( i V}lein“’ot>< i Imeimwot>

n== m= ®)
— Z anmei(n+m)w0t
nm
Thus, frequency components at (n + m)w,.
Average (Real) Power:
1 (7 -
P =?f p(6)de = Z Re(V,I",) ©)
0

n=—oo

In practice, this research has computed by using the function
below:
Np

p= Z Vol cos(8, — ) (10)

where:

Wadi Alshatti University Journal of Pure and Applied Sciences, vol. 4, no. 1 January-June 2026

Page 46



Ben Della, et al.

o 0, =arg(R)
o ¢, =arg(ly)
e N, : Number of significant harmonics.
According to Table 1.
Assume T = 80 min (periodicity from daily pattern), N = 8.

Apply 8-point FFT:

7
V, = Z v, - e TR/8 n =0, ...,7

11)
k=0
e V,=Yv, ~100.8 > DC=100.8/8 =126V
e V|, |V;], ... » harmonic magnitudes
Then:
THD, = VIVal? + Vs + - (12)

A
If THD,, > 3%, flag for inspection.
Optimization and Error Minimization

To ensure optimal approximation, minimize mean square error
(MSE) between original and reconstructed signal [16]:

N-1
MSE = — Z v, — |2
=N vy — Dy
k=0

Where 7, is the inverse DFT of truncated spectrum.
Optimal truncation: retain harmonics with

[Vl > € (e.g., = 0.01 X |V;]).

This reduces computational load in loT nodes.

Results

Figure 4 illustrates the linear relationship when the temperature
stabilizes between solar irradiance (the power per unit area
received from the Sun) and energy output of the solar panels.
Each point on the scatter plot represents a pair of solar
irradiance in Table 1 and corresponding energy output values.
The plot shows a positive correlation between solar irradiance
and energy output, indicating that higher solar irradiance
generally results in higher energy output from the solar panels.
Variations around the trend line suggest that other factors, for
instance, panel Daily Performance Ratio, and temperature; also
influence the energy output.

Demonstrates the impact of temperature on the voltage output
of solar panels. The scatter plot shows an increase in
temperature tends to slightly increase the voltage output of the
solar panels. The relationship appears to be less direct
compared to solar irradiance in Table 1 and energy output,
indicating that temperature is one of several factors affecting
voltage, as illustrated in Figure 5.

The Daily Performance Ratio of the solar panels fluctuates over
time, likely due to changing environmental conditions, for
instance, sunlight, temperature as well as the operational status
of the panels. Regular peaks and troughs may indicate cyclical
patterns in the data, such as daily or seasonal variations in

(13)

Energy Output (kWh)
o

00 850 900 950
Solar Irradiance (W/m®)

Figure 4: Solar Irradiance and Energy Output the linear relationship as
shown when the temperature stabilizes

126
X Measured Data
=X+ Quadratic Fit (R? = 0.984)

250 275 30.0 325 350 375 40.0 425
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Figure 5: Temperature Impact on Voltage

Daily Performance Ratio (DPR) as presented in Figure 5. The
graph illustrates the Daily Performance Ratio of the solar panel
system over time, expressed as a percentage. The daily
performance ratio has gradually decreased from a value of
around 97% to a value of about 93% over a time duration of 10
units. This is due to the increasing effect of environmental
factors like temperature rise, dust accumulation, and also their
partial shading effect over the performance ratio. The trend
emphasizes the necessity of monitoring and predicting possible
failure in EMS which is a concrete loT-based Energy
Management System to take preemptive action before
performance degradation occurs to minimize energy loss. Refer
to the diagram (Figure 6) for more details. below. In addition,
the system DPR, which refers to the ratio of actual power
output to theoretically expected output based on prevailing
irradiance and temperature conditions, showed an initial peak
of around 97%. The high value suggests that when checks first
started, the conditions were optimal, that is, the panels were
clean, the insolation was good, and the trackers were tracking
effectively. Over the next ten days, the module degradation rate
fell to 93%. The dust accumulation on the module surface,
partial shading from nearby vegetation and high ambient
temperatures over 40°C affected the performance of the
module. Additionally, these results illustrate the power of
monitoring and prediction in preventing deterioration of the
system's long-term performance.

The reported DPR value of around 97%, as shown in Figure 6
does not mean the true PV cell conversion DPR, which is
between 15% and 23% for commercial silicon-based panels
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under standard test conditions (STC). The DPR of 0.901 is
calculated by taking plant energy and dividing it by the
maximum energy that was available from the time it was
running.

3 [ i s & &
Time (Date)

Figure 6: Temporal Evolution of Solar Panel System Daily
Performance Ratio

This metric is derived from the following formula:

Actual Power Output (W)
Theoretical Power Output (W)

DPR = ( ) x100  (14)

Where: Actual Power Output is measured via I0T sensors
(INA219 current sensor and voltage divider circuit).
Theoretical Power Output is estimated using the solar
irradiance data (Apogee SP-212 pyranometer) as well as known
panel specifications, adjusted for ambient temperature effects
using the panel's temperature coefficient.
A DPR of 97% suggests that the output of the PV array is
certainly close to the ideal one. Moreover, it was during the
early monitoring periods. Also, it was during the periods with
negligible effect due to dust accumulation, partial shading, and
high-temperature effects. This high value reflects.
e The sun's path is ideally aligned with the fixed-tilt
array (30 degrees south).
e At the beginning of the observation period, it had little
or no soiling or degradation.
e The charge controller efficiently controls the
maximum power point tracking (MPPT)
e Low electrical losses in wiring and inverters.
The daily performance ratio of operational photovoltaic
systems depends on variations in electrical and thermal
parameters. To be specific, the open-circuit voltage has a
negative temperature coefficient and the voltage output drops
when the cell temperature is increased beyond the standard test
condition. At the same time, dust and partial shading reduce the
irradiance that hits the surface. Thus, the short-circuit current
also goes down. Over the 10-day monitoring period, a 4%
decline in power output and overall system performance ratio
was witnessed due to this combined impact on 10 kW rooftop
solar system. The downward trend signifies the need for a
constant check of the loT-based EMS framework and adaptive
control to protect the environment and keep the system in good
shape. A 100% efficiency level is commonly accepted as a
system’s performance under ideal conditions. However, this
paper claims that our facility is operating at 97% of its

theoretical maximum under current conditions. Furthermore,
97% is a different and meaningful number that can potentially
be useful for monitoring, verification, and optimization.
Predictive maintenance was assessed at intervals based on the
system's data study. The occurrence of maintenance intervals is
something that might be exploited within the predictive
maintenance algorithm for the detection of faults [16]. The
graph shows instances when maintenance required due to
discovered faults or drops in performance. In order to sustain
ideal performance and increase the longevity of the solar
panels, regular maintenance is requir d as shown in Figure 7.

104 — Predicted Maintenance Interval

a 2 a 6 8 10
Time (Days}

Figure 7: Predictive Maintenance Intervals

Figure 7 shows how we use data to predict the best
maintenance times for a solar PV system for ten days. The
upward slope over the interval shows us that the systems learn
to no longer maintain themselves and as a result we have
initially high and regular critical faults which slowly become
less frequent. Noises and variations happening all the time is
true proof of the ability to adapt to environmental stress and
operating faults. This flexible timing plan helps decrease
downtime and increase energy production. It shows how
machine learning could be a useful tool for managing energy.
Cost Benefit Analysis

The cost-benefit analysis revealed that the loT-based EMS is
economically viable (Kudzi et al., 2025), with a favorable return on
investment due to reduced operational costs and improved energy
Daily Performance Ratio. Also, the actual and predicted values for the
RF model from the provided dataset is presented in Figure 8.

Actual Values
Predicted Values

0 200 400 600 800 1000 1200 1400
Data Point Index

Figure 8: the actual and predicted values for the RF model from the
provided dataset

The prediction error metrics for the RF model are as follows:
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Mean Absolute Error (MAE): 7.86

Mean Squared Error (MSE): 97.40

Root Mean Squared Error (RMSE): 9.87

The errors are spread and whether they are centered around
zero. There are 11 outliers in the prediction errors for the RF
model. The outlier bounds are (Lower bound: -26.71) and
(Upper bound: 26.36), as presented in Figure 9.
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Figure 9: The plot above shows the distribution of prediction errors
for the RF model

The scatter plot illustrates a strong positive correlation between
the actual and predicted values of solar panel performance, with
data points closely clustered around the diagonal line. The
Random Forest (RF) model can forecast energy output with
high accuracy as evidenced by a correlation coefficient of 0.95.
The slight change of the ideal prediction line shows how
efficient our model is at figuring out the dataset. Figure 10
supports this claim below.
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Figure 10: Correlation between the actual and predicted values is
0.95, indicating a strong positive relationship

The R2 scores for the five cross-validation folds show
consistency in predictions. Fold 3 has the maximum R2 value of
around 0.90, which is strong, while the values for the other
folds remain above 0.85 and are high. The model demonstrates
good robustness, with minor variations across various data
batches indicating its reliability of solar panel Daily
Performance Ratio prediction, as seen in Figure 11.
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Figure 11: R2 Scores based on stability across folds, indicating

consistent predictive accuracy

The bar chart shows the stability of a model's prediction
accuracy by means of prediction in five cross-validation folds.
Fold 5 has the highest MAE (approximately equal to 8.7), but
all folds vary over a narrow range. The small difference
indicates a robustness in the model ability to predict for
different data subset as shown in the Figure 12.

@

MAE (Mean Absolute Error)
)

]
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Fold Number

Figure 12: MAE Scores the error distribution across folds,
representing mean absolute errors

Root Mean Squared Error (RMSE) assessed across five cross-
validation folds indicating model prediction accuracy. Fold 3
has the lowest RMSE, at around 9.4, with all folds having
values in a tight range. The model appears robust as it can
generalize to other data sets according to Figure 13.

10

RMSE (Root Mean Squared Error)

0 1 2 3 4 5

Fold Number
Figure 13: RMSE Scores the root mean squared error across folds,
indicating the spread of error magnitudes

The residual plot shows the difference between actual values
and predicted values for all data points of the dataset along a
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horizontal line with its order. The errors are randomly scattered
across the zero line, showing the absence of systematic bias or
trends in the predictions. The random variation reinforces the
model's robustness and reliability in describing the solar panel
performance data, as demonstrated in the Figure 14.

30
20
10

)

Residuals
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Figure 14: The plot of the residuals over time, with zero as the
reference line to show prediction errors fluctuate and whether there are
any patterns or trends in the residuals

The residual plot below displays the spread of errors against the
predicted values. The random scattering of points about the
zero line is an indication of a good model. The model’s
predictions do not exhibit systematic bias or heteroscedasticity
as indicated by the pattern. A constant spread of residuals

100

confirms that the model is a good fit for the data that indicates
the performance of solar panels. This is shown in Figure 15.
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Figure 15: The plot of the residuals against the predicted values

Helps to identify any possible patterns like a case of
heteroscedasticity (unequal spread) or some form of bias. In a
perfect scenario, the residuals are uniformly scattered around
zZero.

Figure 18 shows how the energy output of a PV system
changes over 10 days. The monitored values (in green dot) are
on a downward trend. The cubic trend line (red dashed) shows
this decline. This confirms that there is a gradual loss of
performance due to the effects of dust and high

87.7%

Average Daily Performance Ratio (%)

Climate Type
Figure 16: Comparison of average DPR across six climate conditions

The bar graph Figure 16 depicts the Average Daily
Performance Ratio (DPR) of six climatic zones. This data
reveals that environmental conditions greatly influence
the DPR of a solar PV module. While the Sunny Desert
displays the highest DPR of 87.7%, most likely due to the
high and stable irradiance, the Cloudy Temperate has an
average of 29.0%, which is in significant losses
attributable to diffuse and attenuated radiation. The data

shows that photovoltaic systems perform well in semi-arid
and alpine regions while they suffer performance penalty
in tropical and temperate climates. The performance
degradation is mainly due to humidity, soiling and
variation in clouds. This finding calls for the designers
and managers of solar energy systems worldwide
application of climate-specific system design and adaptive
management.
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Figure 17: Average Voltage THD Across Six Climate Conditions

Figure 17 quantifies the Average Voltage Total Harmonic
Distortion (THD) across six distinct climate types, revealing
a pronounced correlation between environmental stress and
power quality degradation [18,19]. The highest THD of
3.94% is observed in the Sunny Desert climate, attributed to
extreme thermal cycling and dust-induced inverter stress,
while the lowest values of 1.00% are recorded in Cloudy
Temperate and Cold environments, which offer more stable

operating conditions. The data demonstrates that harsh, high-
temperature  climates  significantly elevate  harmonic
distortion, thereby increasing the risk of grid instability and
component failure. This finding underscores the critical role
of DFT-based THD monitoring within the loT-based EMS
framework, as it provides an early-warning mechanism for
incipient faults that are most prevalent under severe
environmental conditions.
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Figure 18: Graph displaying energy output over a period of time
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temperature. There is a close correlation between the
measured data and the trend line, meaning the system can
accurately capture and model performance degradation. It is
important to monitor an industrial process in order to avoid a
loss of efficiency and to maintain operational yield.

R Score
RMSE I
Random Forest Linear Regression

Support Vector Machine Neural Network
Machine Learning Model

Figure 19: model prediction accuracy (r2 & rmse) comparison

The creators of the system are required to provide the
relevant data to which the model can be fitted. Supply of
versions makes the model independent of every possible
change, and the model can be fit according to its
requirements. The R2 score is shown in blue, and it tells us
how much variance in the target variable our model was able
to account for. Meanwhile, the orange bars represent Root
Mean Squared Error (RMSE) or the average error in our
predictions. The findings indicate that the neural networks
model produces the greatest R2 score (roughly 0.89) and the
lowest RMSE (roughly 10.2), which shows greater
forecasting power and robustness. On the other hand, the
linear regression model has the worst performance, with the
lowest R2 score of around 0.84 and the highest RMSE of
around 11.5, suggesting that it is inadequate for this non-
linear data. Our analysis shows that model we selected is
indeed a suitable choice. The neural network is a great choice
because it learns from multiple inputs to predict energy
output accurately. This can enable predictive maintenance
and optimization of operations.

Relationship Between Technical Characteristics of the
Used Solar Panel

The results of the investigation and the efficiency of the 10T-
based Energy Management System largely depend on the
technical characteristics of the polycrystalline silicon solar
panel deployed in Baniwalid, Libya. The panel was not just
an energy producer; it was the most important physical asset.
Its actual performance in the field under stress provided the
necessary data to validate the system prediction and optimize
it after production. In addition, the polycrystalline silicon
module is quite significant. The performance degradation is
due to its inherent material characteristics, notably well-
recorded negative temperature coefficient for voltage (Voc).
As the ambient temperature continuously exceeded 40 °C
(which might lead the cell temperature to exceed 65 °C), the
module voltage and MPP decreased as expected, which
caused a 4% decline in performance ratio (PR) [20-22].

The panels were fixed-tilt mounted at 30° to the south, to
maximize yearly yield for the site latitude. This stable, non-
tracking configuration provided a consistent basis for
performance evaluation. The observed variations in PR,
which ranged from 97% to 93%, were clarified.
Consequently, the reasons were identified as environmental.
As for the environmental factors, they were temperature,
soiling and system health. As for the panel orientation, it did

not change. Therefore, the variation was not due to that.
Thus, the variables temperature, soiling and system health —
were those the EMS was developed to mitigate [9]. The
performance of the panel next to the ground is significantly
impacted by the dry environment where it is located. (18
words) Due to the technical characteristic of the glass
surface, atmospheric dust pollutes the solar cells and reduces
irradiance and short-circuit current (Isc). The 4% drop in PR
over the next ten days is due to this soiling and thermal
effects. Due to the quick and quantifiable deterioration, such
a system is necessary. It will be useful to monitor these losses
with the loT-based system in real-time. Further, the
monitoring system will trigger maintenance or optimization
for losses when detected. The voltage and current of the panel
were monitored continuously by calibrated 10-sensors
(INA219, voltage divider), while environmental parameters
were recorded by a pyranometer (Apogee SP-212) and a
temperature sensor (BME280) in a closed loop [17,23]. Data
stream for high resolution at 10 minute interval of panel’s
physical state that is connected with EMS. We use the data to
calculate a real-time PR. We perform DFT-based THD
analysis for the fault detection of the equipment. We also use
this data to train the machine learning model to predict any
failures that may happen within the patch. Similarly, we are
also getting predictions on yield. In short, the panel’s
technical characteristics create the information that controls
the entire intelligent framework.

Discussion

The integration of 10T gadgets and advanced computational
models, namely Artificial Neural Network (ANN) are
revolutionary in the areas of optimization and intelligent
management of photovoltaic (PV) systems [23,24]. This
study presents a comprehensive loT-based Energy
Management System (EMS) framework designed for real-life
solar panels working in a semi-arid environment to enhance
performance and reliability and improve longevity. The
proposed system improves the energy Daily Performance
Ratio, facilitates fault detection, and reduces operational costs
by integrating real-time sensor data acquisition, edge-to-
cloud analytics, and predictive maintenance using machine
learning [25]. An important finding of this research is the
strong positive correlation of the solar irradiance in Table 1
as well as the energy output, as shown in Figure 4. This
would not be surprising based on the fundamental theory of
photovoltaic operation. However, the high-frequency, time-
synchronized data collected through the 10T network enables
precise quantification of ‘the confusion’ that researchers
generally talk about. The deviations produced as a result of
variations in temperature, partial shading, and soiling
conditions are measured through a ten-minute sampling
interval and processed through a signal processing tool.
Using Discrete Fourier Transform (DFT) on voltage and
current waveforms can obtain harmonic components to
compute Total Harmonic Distortion (THD). THD is an
important power quality indicator of power or inverter health.
The spectral analysis showed high THD before the system
Daily Performance Ratio started to drop [26]. This suggests
that Fourier methods can provide an early warning of
possible problems, such as inverter degradation or grid fault
[1,16]. This ability improves the system's ability to accurately
diagnose issues using more than just threshold alarms. The
system can make preventative moves before a catastrophic
failure. The performance of the PV differs at different
temperatures. Figure 4 draws attention to the ability of the PV
to work under various temperatures. Classical PV models
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estimate that open-circuit voltage drops with increasing
temperature [27,28]. However, the slight increase in
operational voltage under varying irradiance conditions may
have been due to load-dependent and the working of
Maximum Power Point Tracking (MPPT) algorithms [29,30].
This difference shows that static models based on physics are
not enough to capture what real systems do. Thus, there is a
need for a more adaptive data-based controlling action
[31,32]. The ANN model, trained on multivariate inputs such
as solar irradiance given in Table 1, ambient and panel
temperature, voltage and current in Table 1 The traditional
MPPT techniques fail to capture nonlinear interdependencies
among the variables influencing the optimal operating point
of PV [33,34]. This capacity is crucial in arid and semi-arid
regions where thermal stress and dust deposition will
adversely impact long-term performance. The results of this
study are very pertinent when set in the context of recent field
studies from similar climatic zones. Ihaddadene, et al. [35]
has reported an average annual degradation rate of around 2%
for polycrystalline silicon (p-Si) modules due to high
temperature, dust build-up, and long UV exposure in
Morocco’s semi-arid area. A similar study by Nassar and
Salem [36] noted that solar PV cells recorded more than
125.4°C under irradiance levels of ~896 W/m?2 in southern
Libya. Thus, a 69% drop in power output occurs in STC. The
outcome of these results is the environmental gravitas of the
Baniwalid test site and the need for continuous real-time
monitoring systems with the ability to detect performance
degradation in real-time. The EMS based IoT implemented in
this study directly tackles these issues by allowing continuous
monitoring of thermal and electrical parameters thereby
reducing D.P.R. losses through timely corrective actions.

In addition, Machine learning powered by the predictive
maintenance framework is a great improvement over the
traditional time-based or reactive maintenance mechanisms.
In Figure 6, it can be seen that the maintenance interventions
occur in real-time due to the anomalies detected within the
performance metrics. This reduces the likelihood of
unscheduled downtimes and increases the lifespan of the
system. The Random Forest (RF) model was used as a
benchmark showed a high correlation coefficient (r=0.95)
between the actual and predicted Daily Performance Ratio
values with a Root Mean Squared Error (RMSE) of 9.87 and
Mean Absolute Error (MAE) of 7.86 [37]. The use of ANN
models which can model complex and non-linear mappings
for fault classification also further improved accuracy in this
fault characterization. This helps in distinguishing between
transient environmental effects and persistent hardware faults
like micro-cracks, bypass diode failures or soiling-induced
losses [38,39].

The predictive model is statistically robust as per residual
analysis (Figures 14 and 15), and the errors in the model are
random centred at zero without heteroscedasticity. Figures 10
to 12 showcase the cross-validation metrics. All metrics
across the different folds are quite similar which shows the
stability of the model as well as its generalizability. These
two attributes of the models are crucial for deployment in
real-world settings. These findings confirm that the ANN-
based approach can be relied upon in decision-making
problems like these where predictive accuracy directly
impacts operational Daily Performance Ratio and economic
benefit. From a system integration perspective, the use of
low-power, low-cost hardware, for instance, the ESP32
microcontroller given in Table 1 with high precision sensors
(BME280, INA219, Apogee SP-212) ensure grid-connected

and off-grid scalability. The integrity and privacy of the data
transferred will not be compromised when secure
communication protocols (MQTT over TLS/SSL) are used
[40]. By preprocessing the edge using a Raspberry Pi node,
latency and bandwidth use are reduced. Cloud platforms
(ThingSpeak/AWS 10T Core) allow for centralized data
storage as well as visualization and large-scale analytics. This
work can also be used as the basis for a smart grid as well as
a demand-side management system. The cost-benefit analysis
shows a return on investment within 2.3 years. This is
possible through a 12.7% average increase in energy yield
and a 34% reduction in unscheduled maintenance costs.
These figures demonstrate the economics of adopting loT-
based EMS systems, especially for commercial and utility-
scale solar facilities, as even slight gains in Daily
Performance Ratio led to significant revenue improvements
[41-44].

The proposed system also solves some major challenges
identified in the literature such as data fragmentation,
interoperability and security. The framework will enable
integration among heterogeneous devices when standardized
communication and role-based access control are adhered to.
Such conditions are necessary for large scale deployment
[45.46]. Future research will experiment with hybrid deep
learning architectures, such as LSTMs, for time series
forecasting of energy output and fault progression [47].
Researchers suggest that the use of federated learning can
help train models collaboratively on distributed solar farms
without compromising the privacy of individual farms. This
could pave the way for decentralized privacy-preserving
energy management.

The combination of three essential technologies, namely
cloud computing, internet of things (loT) sensors and
artificial neural networks, will facilitate intelligent
management of solar energy in a useful study. The
framework developed within this project, improves energy
Daily Performance Ratio and enhances system dependability
while being scalable and replicable for the enhancement of
solar infrastructure in urban and remote areas. The
contributions support the concept of Industry 4.0 and
sustainable development, offering practical insights to
researchers, engineers and policymakers that will help hasten
the world’s transition to renewable energy.

Conclusion

The study shows that the performance of solar panels can be
enhanced using loT-based EMS. Incorporating real-time data
acquisition, processing, and predictive maintenance
capabilities enhance Daily Performance Ratio as well as
provide substantial cost savings. In the future, we are going
to be working on focusing on scaling the system. Initial
implementation costs may present a barrier to uptake,
particularly for off-grid systems; however, the lifetime
economic and operational benefits warrant the expenditure.
Future studies must focus on developing low-cost, secure,
interoperable 10T architectures by integrating machine
learning models for autonomous fault detection, performance
forecasting and adaptive control key enablers for the next-
generation smart solar energy systems. The initial
implementation cost might prove a barrier, especially for off-
grid systems. However, the economic and operational
benefits are attractive over the long term.
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